
A DSL embedded in Rust
Draft Paper

Kyle Headley
University of Colorado Boulder
kyle.headley@colorado.edu

ABSTRACT
In this paper we present a DSL parsed by the Rust parser (and
macros), type checked by the Rust type checker, and run with com-
piled Rust code. We focus on type checking, where we use two
"languages" provided by Rust: functional-style meta-programming,
and a form of declarative logic mirroring type rules. Both are imple-
mented with trait resolution, part of Rust’s generics system. Rust’s
macros are hygienic and can rewrite tokens into expressions, allow-
ing a wide range of syntax available to DSLs. The compiled code is
standard, but included to demonstrate the full range of language
definition available in Rust.

ACM Reference Format:
Kyle Headley. 2019. A DSL embedded in Rust : Draft Paper . In Proceedings
of International Symposium on Implementation and Application of Functional
Languages (IFL’18). ACM, New York, NY, USA, 6 pages. https://doi.org/10.
1145/nnnnnnn.nnnnnnn

1 INTRODUCTION
The Rust language reached version 1.0 in mid-2015, bringing to-
gether high-performance, thread-safety, and a minimal runtime
system. We ignore those features in this paper, concentrating in-
stead on the macros and trait-based generics, the meta language
of Rust. Both of these are expressive enough to be used as their
own general-purpose programming languages. This paper is an
exploration of these languages in the context of creating a lambda
calculus DSL. We briefly introduce macros in Section 2, then move
on to an intro of the meta language, which we will call “TraitLang”
for the remainder of this paper. We describe our usage of TraitLang
in Section 3.

Rust has been enhanced with procedural macros, but we will
be using the standard ones. These are a name and a list of rewrite
rules; the first rule whose pattern matches the syntax the macro was
called on is used to expand it into new syntax. The new syntax can
include macro invocations (but not definitions), allowing recursive
calls. We use this to mirror BNF grammars, with a different macro
for each component of the grammar. Macros are commonly used
to transform code snippets, but they have a mode that deals with
arbitrary tokens.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
IFL’18, August 2019, Lowell, MA, USA
© 2019 Association for Computing Machinery.
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

TraitLang makes use of Rust generics, but is shaped by traits, a
feature similar to typeclasses in other functional languages. Traits
normally provide an interface for using data of the type implement-
ing them, but are still useful as a classifier for type-level values. To
avoid confusion when discussing these type-level values, we refer
to one as a “struct”, the keyword used when defining a type in Rust.
There are no type-level types, so the word “trait” is sufficient for
our purposes. We introduce the basic constructions in Section 3.1

TraitLang is a lazy, untyped language with some features similar
to both logic and functional languages. It is declarative and order
of declaration doesn’t matter, as all items are fully recursive. It
is interpreted by the Rust trait resolution algorithms, which are
expected to be enhanced in the near future. In this paper we use the
original semantics from version 1.0, though the Rust team almost
never introduces breaking changes (until the next major version).

TraitLang is pure, since Rust’s type-level items do not have access
to the object language at all. It is not even possible to get output from
a TraitLang program. In this paper, we rely on the type-checker to
verify that our programs arewell-formed, but demonstrating correct
output is beyond our scope, requiring object-level display methods.
Because TraitLang is lazy, the well-formed check also requires that
type aliases be used.We assume a "fn main() { let x:TypeAlias1; ... }"
with each alias used at least once.

Like types in a common language, traits classify structs, but
unlike types, a struct can “implement” an unlimited number of
traits. Each of these traits may contain associated types specific
to its implementation by a struct. This implementation therefore
acts as a mapping from one struct to another, one of the ways to
define a function. However, to allow first-class functions, we prefer
a slightly deeper embedding, which is described in Section 3.2.

Haskell. Type-level programming is available in many other lan-
guages. Haskell in particular provides many of the features wemake
use of in this paper. Haskell users may recognize the semantics of
our type-level language, though the syntax is very different.

The next part of the paper walks through our implementation
of the lambda calculus with addition as a DSL. We describe parsing
in Section 4, type checking in Section 5, and running the program
in Section 6. Finally, we look at some related work and conclude
with a link to a working version of the code.

2 RUST MACROS
Each Rust macro is a list of rewriting rules, from a pattern matcher
to a template for expansion. The matcher includes literals, pattern
variables, and repeaters. Pattern variables are prefixed with a $ and
include a “fragment specifier”. We will mostly be using token trees
(tt), which macro invocations are initially parsed into. Token trees
are either a single token, or a parenthesized ((),{},[]) sequence of
tokens. We also make use of expr, which signals the Rust parser

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

IFL’18, August 2019, Lowell, MA, USA Kyle Headley

macro_rules! expr {

(0) => (Num(Zero));

($a:tt $p:tt) => (App(expr![$a],expr![$p]));

({^$e:expr}) => ($e);

(($($e:tt)+)) => (expr![$($e)+]);

($n:tt + $($ns:tt)+)

=> (Plus(expr![$n],expr![$($ns)+]));

}

Figure 1: Selected macro rules (out of order)

to fully parse the match as a Rust expression. Repeaters $(...),+

match multiple instances of their inner pattern, with optional sepa-
rators. The macro expander checks matchers in order, and expands
the first one that matches the input. Some selected rules are in
Figure 1, explained below.

Later we will use the expr! macro to parse syntax into an AST.
For now, we use selected portions shown in Figure 1 to introduce
Rust macros. The first line contains only a literal in the matcher, to
transform a number into its AST representation. (Our AST distin-
guishes raw natural numbers from syntax.) There are no pattern
variables, so the 0 must be matched exactly. The second line shows
two pattern variables specified as token trees. This pattern matches
any two tokens, and the expander recursively invokes the expr!

macro on each, placing them within an App node in our AST. The
third line is used to insert pre-created expressions into our AST.
The pattern variable is parsed and used directly. The other tokens
are literals and must be matched exactly. Using one of the forms of
parenthesis to surround the match allows it to be treated as a token
tree before reaching this rule.

The final two lines of Figure 1 show off the macro repeaters. The
first is a minimal repeater surrounded by parentheses, for parsing
parenthesized expressions. The contents of the parentheses are
copied into a recursive invocation. The final line is a more complex
version of the same principal, used to put everything after the first +
into the second section of the Plus AST node (after a recursive call).
If the matched pattern contained multiple +’s, they would evaluate
left to right. Our DSL doesn’t need to deal with order of operations,
but one that did would need a more complex matcher.

3 TRAITLANG
This section describes the use of TraitLang as a functional language.
The syntax and programming style are very different from tradi-
tional languages, so we take some care in walking through a series
of progressively more complex examples. TraitLang is interesting
on its own, so we go a bit beyond what is needed to implement
our DSL, describing a method for using first-class functions. Type
checking mostly makes use of a logical style, but does use support-
ing functions. The membership function for contexts (described in
Section 5.1) is rather verbose, since TraitLang is not well-suited for
functions with multiple branches.

3.1 A Hidden Language
When we ignore Rust’s main language and focus on the trait lan-
guage, we are left with four items: declaration of a trait, declaration
of a struct, implementation of a trait for a struct, and declaring a
type alias, which functions like a let-binding. The basic syntax of

trait Nat {}

struct Zero;

impl Nat for Zero {}

struct Succ <N>(N);

impl <N:Nat > Nat for Succ <N> {}

type One = Succ <Zero >;

Figure 2: Declaration of Natural numbers in Rust’s type-
level language

these items in shown in Figure 2, which gives the standard defini-
tion of natural numbers. Here we define Nat as a trait, which works
well at first, but is not sophisticated enough for a formal definition.
Structs may implement multiple traits, allowing a later “crate” (Rust
package) to implement e.g. trait Real for the same Zero. We return
to this issue later.

Figure 2 continues by declaring a struct called Zero and imple-
menting Nat for it. This is the simplest form of the declarations.
More complex is Succ, which requires a parameter when the struct
is used. In this case N may be any other struct, including a recursive
Succ (though infinite sequences cannot be defined). The second to
last line is read “For all N such that N implements Nat, implement
Nat for Succ<N>”. Using this definition, the compiler will not give
an error when using e.g. Succ<Red> (assuming a struct Red has been
declared), but it would not implement Nat. We could have given
a trait bound when declaring Succ, that is, “struct Succ<N:Nat>(N);”.
Doing so would cause a compiler error on use of Succ<Red>. We can
use a struct by creating an alias like in the last line. The struct must
be concrete, with no type variables.

There are a few syntactic peculiarities in Figure 2. Trait defini-
tions end in curly braces, which are usually filled with object-level
function definitions. We will add associated types here later. Formal
type parameters, which can appear in any of the four syntactic
items, are placed between angle braces and separated by commas.
Each onemay be required to implement any number of traits, placed
after a colon and separated by a “+”. Struct definitions must include
each type parameter in parens, which is required for the object-level
language, but we will not use it anywhere else. In the second to last
line of Figure 2, the formal type parameters are after the impl, and
their use is after the Succ. Usage does not include trait bounds.

3.2 A Functional Language
The full power of a functional language requires having functions.
Figure 3 presents the simplest form available, using a trait as a
mapping. Like defining Nat as a trait above, this form is simpler but
limited, and we mainly use it for DSL meta-functions. We describe
the syntax and semantics of this form first before moving on to one
that allows first-class functions. In the figure, we define addition
and subtraction by one.

Figure 3 introduces bounds for trait declarations, associated
types, and how to access them. The first line declares a trait AddOne
that requires any struct it’s implemented for to also implement
Nat. It includes a single associated type named Result that must
also implement Nat. The implementation on the next line shows

A DSL embedded in Rust IFL’18, August 2019, Lowell, MA, USA

trait AddOne : Nat { type Result:Nat; }

impl <N:Nat > AddOne for N { type Result = Succ <N>; }

trait SubOne : Nat { type Result:Nat; }

impl <N:Nat > SubOne for Succ <N> { type Result = N; }

type Two = <One as AddOne >:: Result;

Figure 3: Using traits as mappings

trait Func2 <A,B> { type Result; }

struct Add;

impl <N:Nat > Func2 <Zero ,N> for Add { type Result = N; }

impl <N1,N2> Func2 <Succ <N1>,N2> for Add where

N1:Nat , N2:Nat ,

Add : Func2 <N1,N2>

{ type Result = Succ <<Add as Func2 <N1,N2 >>::Result >; }

type Three = <Add as Func2 <One ,Two >>:: Result;

Figure 4: Structs that can be used as functions

off the power of variables, implementing AddOne for every Nat, and
providing an associated type dependent upon it. SubOne is similar,
but note that it is not implemented for every N. Every associated
type must be defined in order to implement a trait, but traits need
not be implemented for every struct. This can be useful to en-
sure that suitable values are provided to computations. If appropri-
ate, we could implement SubOne for every Nat by including the line
“impl SubOne for Zero { type Result = Zero; }”

The last line in Figure 3 uses the unfortunate syntax for accessing
an associated type. Both of the traits here have the same associated
type name, so we must disambiguate by naming the struct, the trait
implemented on the struct, and the associated type of that trait.
The syntax is slightly better in Figure 4 where we use structs as
functions.

Rust generics use type variables, but there are no trait variables.
If we were to continue to use traits as we did above, we would
run into problems with generics and first-class functions in our
type-level language. Below, we use traits to represent higher-level
concepts. For example, there is a trait to mean that a struct is a
function, rather than using a trait as a function. Figure 4 declares
a trait representing a function of two variables. It then declares a
struct Add and implements the inductive algorithm for adding two
numbers.

Figure 4 introduces trait parameters which are similar to struct
parameters. It also introduces the “where” clause, which can be used
to add arbitrary requirements to any item. Here, the inductive case
for defining Add requires Add be defined on a smaller structure. Since
it is guaranteed by the where clause, we can look up its associated
type to use in the definition of the result. Since Add is a struct, it
can be passed as a parameter to functions just like One and Two were
in the last line. Since the function parameters are declared on the
trait, it can be called by any code with a where clause recognizing
it as a function. There will be an example later.

trait Typed { type Type; }

struct Natural;

impl Typed for Zero { type Type = Natural; }

impl <N:Typed <Type=Natural >> Typed for Succ <N>

{ type Type = Natural; }

trait Func1 <A:Typed > { type Result:Typed; }

struct Next;

impl <N:Typed <Type=Natural >> Func1 <N> for Next

{ type Result = Succ <N>; }

type Four = <Next as Func1 <Three >>:: Result;

Figure 5: The typing trait, allowing us to emulate a standard
type system

struct Apply;

impl <A,B,R> Func2 <A,B> for Apply where

B: Typed , R: Typed ,

A: Func1 <B,Result=R>

{ type Result = R; }

type Five = <Apply as Func2 <Next ,Four >>:: Result;

Figure 6: A function that takes another as an argument

3.3 A Constraint Language
In this section we describe the final piece of syntax that will allow us
to emulate a standard type system in our language. So far, we have
been using traits as if they were types. But structs can implement
multiple traits, so our functions can be applied to multiple “types”.
In order to have one type per struct, we need a mapping. Figure 5
demonstrates using a trait to declare types.

Figure 5 repeats functionality defined above, but in our final form
with types. The fourth line can be read: “For all N of type Natural, the
type of Succ<N> is Natural”. Note that we now have multiple levels
of constraint, since we do not need to constrain the associated
type. Func1 requires its argument and result to be Typed, but doesn’t
require a specific type. Applying it to Three in the last line works
the same as our prior example, but now the compiler is checking
the associated type (required for arguments of Next) as well as the
trait of Three.

We now know all the features we need to use TraitLang as a
general-purpose language. Our language is untyped, but uses traits
both to add and remove capabilities. Functions were added from
mappings in traits, and the ability for Succ to take any parameter
was removed by a constraint. Structs can be used as any value in the
language, even when that value is acting as a different feature, like
a type or a function. For example, Figure 6 shows a use of first-class
functions. Using structs as types allows type-based operations, as
in dependent types. We also see a syntactic optimization in the
third line. We can constrain the associated type as well as type
parameters. This in effect "binds" R to the result of A applied to B,
allowing us to use it rather than the longer form used in Figure 4.

IFL’18, August 2019, Lowell, MA, USA Kyle Headley

e := expressions

(e) parentheses

n number

v variable

lam (v:t) e abstraction

lam (v1:t1)(v2:t2)... e

multiple abstraction

e1 + e2 addition

e1 e2 application

e1 e2 e3 ... multiple application

t := types

(t) parentheses

Number base type

t1 -> t2 -> ... arrow type

Figure 7: The grammar for our DSL

4 PARSING OUR DSL
The DSL we’re implementing is the simply-typed lambda calculus
with numbers and addition. Our grammar is standard and shown in
Figure 7. Using macro rules for parsing means that we can follow
our grammar very closely. We create one macro for each syntax
class, and one rule for each syntax form. Our only deviations are in
representing numbers and variables, and adding an injection point
for easier composition, as described in Section 2. The full parser is
shown in Figure 8.

Representing numbers and variables is a pain point of thismethod.
Since we’re working in TraitLang, we don’t have access to any run-
time functionality, only logic and induction. Integers and arithmetic
are not available, so we use inductively-defined natural numbers
(nats). The parser needs to map number literals to nats, so we need
a rule for each number. Variables are available as additional structs,
which would still add lines to the code. Also, we need to abstract
over variables in our type checking later, but Rust does not give us
an easy way to check both equality and inequality. To overcome this,
we use nats as variables as well, with AST nodes that distinguish
them from numbers.

Many of the rules in Figure 8 were shown previously or are
similar to those. We describe some additional complexity here. The
multi variable lambda rule has a nested repeater. The inner matches
all the var and type tokens, and the outer matches the parenthesized
groups. Before it is the first variable and type, which are used to
create the lambda AST node. The repeater represents additional
variables, which are used to create a nested lambda node with a
recursive call. The lambda nesting pattern is convenient in this
way, but the application nesting pattern is not. It is the reason we
created the injection rule above. The nesting of applications must
be as deep initially as the number of parameters, which we don’t
know. So we create the first AST node and pass it unchanged into
the recursive call. The type rules are simple because arrow nests
the lame way that lambda does.

5 TYPE CHECKING OUR DSL
This section describes the code for our type checker, divided into
two parts. The first deals with functions for context lookup, and is
done in the functional style introduced in Section 3. The next part
handles static checks of our AST, and are written in a more logical

macro_rules! expr {

(($($e:tt)+)) => (expr![$($e)+]);

({^$e:expr}) => ($e);

(0) => (Num(Zero));

(1) => (Num(Succ(Zero)));

...

(x) => (Var(Zero));

(y) => (Var(Succ(Zero)));

...

(lam ($x:ident : $($t:tt)+)

$(($($ts:tt)+))+ $($e:tt)+

) => (Lam(

expr![$x],

typ![$($t)+],

expr![lam $(($($ts)+))+ $($e)+]

));

(lam ($x:ident : $($t:tt)+) $($e:tt)+) => (Lam(

expr![$x],

typ![$($t)+],

expr![$($e)+]

));

($n:tt + $($ns:tt)+)

=> (Plus(expr![$n],expr![$($ns)+]));

($a:tt $p:tt) => (App(expr![$a],expr![$p]));

($a:tt $p:tt $($ps:tt)+)

=> (expr ![{^ App(expr![$a],expr![$p])} $($ps),+]);

}

macro_rules! typ {

(($($ts:tt)+)) => (typ![$ts]);

(N) => (Number);

($t:tt -> $($ts:tt)+)

=> (Arrow(typ![$t],typ![$($ts)+]));

}

Figure 8: The parser for our DSL

trait NatEq <N> { type Eq; }

impl NatEq <Zero > for Zero { type Eq=True; }

impl <N> NatEq <Succ <N>> for Zero { type Eq=False; }

impl <N> NatEq <Zero > for Succ <N> { type Eq=False; }

impl <N1,N2,E> NatEq <Succ <N1>> for Succ <N2> where

N2: NatEq <N1 ,Eq=E>

{ type Eq=E; }

Figure 9: Equality function for natural numbers

style. This is valuable because, like for parsing, our code can mirror
the rules from the notation of the theory.

5.1 Supporting functions
Context lookup appears in type checking rules, but often as a func-
tion over the data structure for simplicity. We mirror that here,
but still need a full description of the algorithm. Context lookup
involves comparing variables to find our target. As seen above, we
have implemented our variables as natural numbers, so we need an
equality function for them. This is shown in Figure 9. It follows the
method from Figure 3, since we don’t make use of first-class func-
tions. There are three base cases for equality with zero, followed by
an inductive case. This code is rather elegant, but the membership
function that makes use of it is not.

The context membership function (called Contains in code) re-
quires a data structure and two branch points, one for checking

A DSL embedded in Rust IFL’18, August 2019, Lowell, MA, USA

struct EmptyCtx;

struct TypeCtx <Id ,Typ ,Next >(Id,Typ ,Next);

trait Contains <Id> { type Result; }

impl <N> Contains <N> for EmptyCtx

{ type Result=None; }

impl <Check ,First ,Typ ,Next ,Eq,R>

Contains <Check > for TypeCtx <First ,Typ ,Next > where

Check: NatEq <First ,Eq=Eq>,

Next: Contains2 <Eq,Typ ,Check ,Result=R>,

{ type Result=R; }

trait Contains2 <Eq,Map ,Check > { type Result; }

impl <Map ,C,Cxt > Contains2 <True ,Map ,C> for Cxt

{ type Result=Some <Map >; }

impl <Map ,C> Contains2 <False ,Map ,C> for EmptyCtx

{ type Result=None; }

impl <Check ,First ,T,Typ ,Next ,Eq,R>

Contains2 <False ,T,Check > for TypeCtx <First ,Typ ,Next > where

Check: NatEq <First ,Eq=Eq>,

Next: Contains2 <Eq,Typ ,Check ,Result=R>,

{ type Result=R; }

Figure 10: Membership function for contexts

if we’re reached the end of the list, and one for checking if we’ve
reached our target variable. TraitLang only allows one branch point
and one return value per branch. To get around this, we create two
functions, the first one passing the results of its check to the second
as parameters. The second then branches once based on all the
information. Even for this simple function, the code is difficult to
read. We work through it below.

Figure 10 shows the code of the context membership function.
The first two lines are the data structure, implemented like a linked
list. It can be empty or contain the natural number id of a variable,
a type, and the next node. The Contains function takes an id and
returns an optional value, in the case of calling it on an empty con-
text, it returns None. When called on a non-empty context, Contains
checks for equality with the target, passes that result, along with
the type, as parameters to Contains2 called on the rest of the context
and returns the result of Contains2. Contains2 has enough information
to chose one of the three end-points of the algorithm. If the prior
equality check was true, it returns the prior type (called map in the
code) regardless of the rest of the context. If the check was false
and the rest of the context is empty, it returns None. If their is more
context to process, it does an equality check on the next value and
calls itself recursively the same way Contains did.

5.2 Type checking
Type checking starts by checking that the AST is well-formed. The
code is in Figure 11. Most rules define the syntax that we’re using
as well-formed if its sub-syntax is well-formed. The exception is
the Lam case, which requires a variable as its first item. There are
different traits used for different parts of the syntax, like WFNat and
WFType, to make sure they are used in the proper places. There is

trait WFNat {}

impl WFNat for Zero {}

impl <N:WFNat > WFNat for Succ <N> {}

trait WFType {}

struct Number;

impl WFType for Number {}

struct Arrow <T1,T2 >(T1,T2);

impl <T1:WFType ,T2:WFType > WFType for Arrow <T1,T2> {}

trait Expr {}

struct Num <N>(N);

impl <N:WFNat > Expr for Num <N> {}

struct Plus <N1,N2 >(N1,N2);

impl <N1:Expr ,N2:Expr > Expr for Plus <N1,N2> {}

struct Var <N>(N);

impl <N:WFNat > Expr for Var <N> {}

struct Lam <V,T,E>(V,T,E);

impl <N:WFNat ,T:WFType ,E:Expr > Expr for Lam <Var <N>,T,E> {}

struct App <E1,E2 >(E1,E2);

impl <E1:Expr ,E2:Expr > Expr for App <E1,E2> {}

Figure 11: Well-formedness checking logic

little complexity to the code, it mostly tags some constructions as
appropriate.

Our type checking code in Figure 12 is among the most simple
and elegant in this paper, because we are able to directly mirror the
type checking rules. We use a trait called Typed parametrized by a
context. Premises are found in the “where” clauses with the syntax
form preceding them. The resulting type is an associated type, to
make sure that there is only one type per value. Otherwise, the rules
are direct translations of the typing rules for the lambda calculus.
For example, the last rule, App, requires that the first expression (E1)
be an Arrow type (from T1 to T2) in the current context (Ctx), and the
second expression (E2) be of the type at the front of the arrow (T1),
also in the current context. The type of the App expression is the
type of the end of the arrow (T2).

6 RUNNING OUR DSL
Running our code may require an initial conversion, but would
otherwise be standard. When defining a struct in Rust, it generates
a singleton constructor (parametrized as appropriate) with the same
name. This is what we’ve been using in our AST nodes, while the
struct itself is used in our implementation of traits. From the runtime
perspective, each AST node is a different type, which can make
coding up the evaluation difficult. A conversion to an AST using
tagged variants of types (Rust’s enum) would simplify the eval code.

7 RELATEDWORK
A similar project is “turnstile” [1] for the Racket language. The
authors similarly take advantage of a compile-time algorithm to
do type checking. In their case, they use Racket’s macro expander,

IFL’18, August 2019, Lowell, MA, USA Kyle Headley

trait Typed <Ctx > { type T; }

impl <N,Ctx > Typed <Ctx > for Num <N> { type T=Number; }

impl <N1,N2,Ctx > Typed <Ctx > for Plus <N1,N2> where

N1:Typed <Ctx ,T=Number >,

N2:Typed <Ctx ,T=Number >,

{ type T=Number; }

impl <N,Ctx ,T> Typed <Ctx > for Var <N> where

Ctx:Contains <N,Result=Some <T>>

{ type T=T; }

impl <Ctx ,N,T1,T2,E> Typed <Ctx > for Lam <Var <N>,T1,E> where

E:Typed <TypeCtx <N,T1,Ctx >,T=T2>,

{ type T=Arrow <T1 ,T2 >; }

impl <Ctx ,E1,E2,T1 ,T2> Typed <Ctx > for App <E1,E2> where

E1:Typed <Ctx ,T=Arrow <T1,T2>>,

E2:Typed <Ctx ,T=T1>

{ type T=T2; }

Figure 12: Type checking rules for our DSL

adding typing annotations to the syntax objects it creates. Rust
traits provide a declarative way to add meta-data to types, allowing
much simpler use, and the ability to follow the typing rules more
directly. On the other hand, Racket has more advanced capability
in its macro system, allowing a layer of abstraction that lets the
user follow typing rules as well. Racket also provides a mechanism
for generating useful error messages.

8 CONCLUSION
We have shown the implementation of a DSL with a shallow em-
bedding in Rust. The Rust parser, through the macro system, was
used to parse it. The Rust compile-time algorithms were used to
type check it. And we suggested a way for the Rust runtime sys-
tem to run the code, since that is a far more common task. A full
demo can be run andmodified from https://play.rust-lang.org/?gist=
a0f5ec8999cb08de3842500a9aa959a7&version=stable&mode=debug&
edition=2015.

It is our hope that these explorationswill inform further language
design. Rust’s traits were not originally intended to be used this
way, as is obvious looking at error messages of some programs that
fail to type check. We hope that meta-programming becomes more
valuable in the future, and use cases like those demonstrated will
highlight areas to work on.

REFERENCES
[1] Stephen Chang, Alex Knauth, and Ben Greenman. Type systems as macros. In

Proceedings of the 44th ACM SIGPLAN Symposium on Principles of Programming
Languages, POPL 2017, Paris, France, January 18-20, 2017, pages 694–705, 2017.

https://play.rust-lang.org/?gist=a0f5ec8999cb08de3842500a9aa959a7&version=stable&mode=debug&edition=2015
https://play.rust-lang.org/?gist=a0f5ec8999cb08de3842500a9aa959a7&version=stable&mode=debug&edition=2015
https://play.rust-lang.org/?gist=a0f5ec8999cb08de3842500a9aa959a7&version=stable&mode=debug&edition=2015

	Abstract
	1 Introduction
	2 Rust Macros
	3 TraitLang
	3.1 A Hidden Language
	3.2 A Functional Language
	3.3 A Constraint Language

	4 Parsing our DSL
	5 Type Checking our DSL
	5.1 Supporting functions
	5.2 Type checking

	6 Running our DSL
	7 Related Work
	8 Conclusion
	References

