
Programming in the Rust Type System

Kyle Headley and Nicholas Lewchenko
University of Colorado Boulder
[first].[last]@colorado.edu

September 1, 2017

Rust is a recently-developed, production-ready sys-
tems programming language with an advanced type
system. Its novel borrow-checker and linear types
have received the most attention for pushing the
state-of-the-art in reference-passing safety, but the
use of traits is no less valuable in expressing fine-
grained compiler-enforced program constraints. We
would like to demonstrate the full capabilities of the
trait subset of the Rust type system, from basic para-
metric polymorphism to advanced type-level compu-
tation.

We are proposing a tutorial on this subset of the
Rust type system. We would like to share our knowl-
edge so as to:

• Promote type research for practical code

• Demonstrate additional language safety

• Present an alternative language model

• Teach the “other half” of Rust

Though it is not commonly presented this way,
Rust is a combination of two distinct languages: one
for value computations and one for type computa-
tions. The value language is easier to notice, being
roughly a cross between C and ML. The basic unit of
computation is the function, with branching provided
by pattern matching constructs. This is the common
introduction point for learning Rust, but our focus
will be on type-level computation.

The language for types is less visible, being used
mostly for simple annotations on value expressions.
In fact, this language has its own mechanism of func-
tional computation in traits. Traits in Rust are most
commonly used as interfaces in the types of poly-
morphic functions. Rust has no language support
for inheritance, so programmers use traits to declare
the minimum set of functions available for use with
type parameters. Traits are implemented explicitly
for types, and can require both functions and associ-
ated types to be defined.

Traits are not a novel language feature, but are
a fully modern implementation of an evolving idea:
type classes. Type classes were first introduced in the
Haskell language, where they have been extended in
several ways to their current form. A key recent ex-
tension to Haskell type classes is type families, which
allows type classes to declare abstract types in ad-
dition to functions and values. This feature enables
one to write functional-style computations on types,
where a type class maps an argument type to an arbi-
trary result type. Type level computations have been
explored enthusiastically in Haskell, and a number of
practical uses have been discovered [1]. Rust traits
share this key feature of Haskell type classes in the
form of associated types, but the practice of type-level
computation in Rust has not yet received the same
detailed exposition.

We aim to (a) demonstrate that traits and their
associated types enable arbitrary type-level compu-
tation, (b) describe in detail the syntax and patterns
used to write type-level functions, and (c) explore a
practical application of type-level computation that
adds additional compile-time safety to a Rust pro-
gram. To accomplish these objectives we have put
together a series of short tutorial sections leading up
to a more complex example. We will not assume
that our audience knows the Rust language, but we
will need to use some examples from the value lan-
guage. These will be simple enough to be under-
stood from prior programming language knowledge,
and we’ll avoid or explain any complications from the
rest of the type system. Some of our early sections are
based on Haskell type family examples [1]. Knowl-
edge of Haskell is not assumed either, but may make
the tutorial easier to understand. Later, we work
through the techniques that enable general functional
programming within the Rust type system.

We have six examples to present. The first exam-
ple introduces traits (and some of the value language)
through the common task of function overloading.

1



This is the expected use of traits and the example
comes from the Rust documentation. Next we go
through two examples of state machines encoded in
the type system. The first is an intro to the technique
and the second shows a practical use. The next two
examples show off the ability to do arbitrary com-
putation within the type system. We show how to
create functions from type to type using the associ-
ated type of a trait. We also show how to pattern
match a given type, which allows branching code.

Our final example brings together knowledge from
earlier examples into an interesting toy: an imple-
mentation of the lambda calculus in Rust’s type
system. The implementation, which is being re-
worked for this presentation, is currently avail-
able here: https://gist.github.com/kyleheadley/ (as
untyped lambda.rs). Implementing the untyped
lambda calculus serves as a demonstration that the
type system language is Turing-complete in general,
and that it can be reasonably used to write non-trivial
computations.

After attending our presentation, participants will
be able to do the following:

• Write polymorphic Rust code using traits

• Understand uses of parameterized traits

• Write type-level functions

• Apply type-level functions in practical programs

• Appreciate the elegant, theoretically motivated
design of the Rust type system

We hope that this will provide conference attendees
with the skills needed to extend their research to the
Rust language. We have enjoyed exploring these top-
ics ourselves, and believe that the Rust language is a
platform capable of bridging the gap between modern
theory and practical application.

References
[1] Oleg Kiselyov, Ken Shan, and Simon Peyton Jones.

Fun with Type Functions. https://www.microsoft.com/

en-us/research/wp-content/uploads/2016/07/typefun.

pdf, 2010.

2


