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1 INTRO
An AAM-style program analysis [Van Horn and Might 2010] produces a control-flow graph (CFG)
where the graph nodes are the states of an abstract machine. This analysis is useful for students,
code auditors, and analysis designers. It can be used in an automated way, but it may be too complex
to be understood manually.
To help improve the way people come to understand an analysis, the author is working with

a team to create an interactive visualization. It simplifies a whole-program CFG (wpCFG) by
segmenting it into multiple graphs showing the control-flow of individual functions. The author
is tasked with using the wpCFG to generating these graphs, a process explored in the rest of
this paper. The full visualization has many additional features and may be accessed online (https:
//analysisviz.gilray.net).

Continuous sections of a function’s CFG exist within a wpCFG, but there are complications to
directly extracting them.

• Multiple calls to the function may exist throughout the wpCFG
• Each call may have a different flow
• Calls to other functions are "inlined" by the wpCFG
• Identifying info may change with every machine state

The author overcomes these issues with a novel algorithm and minor adjustments to the analysis,
within the bounds of the AAM methodology. The result is multiple CFGs, each composed of all
and only states associated with a particular function in the wpCFG. Each represents all the flows
through it.

2 AAM
An example of an abstract machine is a CEK-machine [Felleisen and Friedman 1987]. This is a
tuple of control expression (from the lambda calculus), environment (for lazy substitutions) and
continuation (to keep track of parts of the expression not currently in focus). Stepping this machine
to the next state corresponds to a reduction step in the lambda calculus. There are many versions of
this formalism, for example a CESK machine, which adds a store to deal with semantics of mutation.
A store is also useful for abstracting this type of machine for a computable analysis. A loop

in a CEK machine expression evaluation may require an infinite linked list as a continuation.
Instead, the store can contain a portion of the loop with a link back through the store to itself. This
representation is finite even if it represents an infinite sequence. Store addresses may also contain
information for distinguishing one part of an analysis from another, even if it corresponds to the
same syntax.
Figure 1 describes the abstract abstract machine used in this work. Machine states are at the

top, with the “eval” state an extension of the CESK machine. The store is separated for use with
variables or continuations and instrumentation is added. This is separated from the “apply” state
which has a transition rule (in Figure 2) that deals with allocations and bindings, rather than eval’s
pushing and popping continuation frames. The instrumentation added to each of these provides
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ς̂ ∈ Σ̂ ≜

{
eval: Exp × Ênv × Înstr × �Store × �KStore ×�Kont
apply: D̂∗ × Înstr × �Store × �KStore ×�Kont

σ̂ ∈ �Store ≜ �Addr → D̂ κ̂ ∈ �Kont ≜ �Frame
∗
× �Addr

d̂ ∈ D̂ ≜ P(Ĉlo) ψ̂ ∈ �Frame ≜ D̂∗ × Exp∗ × Ênv × Înstr

ĉlo ∈ Ĉlo ≜ Var∗ × Exp × Ênv σ̂κ ∈ �KStore ≜ �Addr → P(�Kont)
Fig. 1. Selected machine domains

⟨apply (d̂λ d̂0...d̂n), ι̂, σ̂ , σ̂κ , κ̂⟩ ; ⟨eval e, ρ̂ ′, ι̂, σ̂ ′, σ̂ ′
κ , âκ ⟩, where

⟨clo (x0...xn), e, ρ̂⟩ ∈ d̂λ ρ̂ ′ = ρ̂[xi 7→ âi ]

σ̂ ′ = σ̂ ⊔ [âi 7→ d̂i ] σ̂ ′
κ = σ̂κ ⊔ [âκ 7→ κ̂]

âi = âlloc(ς̂ ,xi ) âκ = (e, ρ̂ ′)

Fig. 2. Selected transition rule, a function call

precision to an analysis, which would otherwise conflate each use of some syntax with every other
use of it. Finally, the D̂ represents a value as a set of all possible values at a machine state.
The segmentation algorithm is sensitive to calls and returns, so we take a deeper look at the

transition rule that steps into a closure, seen in Figure 2. Here, the apply state holds fully evaluated
values d̂λ , the function to call, and d̂0...d̂n , the parameters. The machine potentially steps to multiple
new states, one for each of the closures in d̂λ , to evaluate its body e . The rest of the computation
involves generating or using addresses, used to refer to store allocated resources.
The addresses âi link the environment ρ̂ to the store σ̂ . The generating function âlloc is a

parameter of the analysis and may make use of the state’s instrumentation to provide precision.
The continuation address âκ is generated by a fixed function that provides maximum precision
in this type of analysis as determined by [Gilray et al. 2016]. This address may eventually be the
target of a return transition, so the allocation here provides a great mechanism for linking calls
with returns.

3 SEGMENTATION
The segmentation algorithm uses the AAM analysis as its input data and generates a separate
CFG for each lambda expression analyzed. The nodes in each of these may be final (no outgoing
edges) with some relevant information, or they may be flow nodes that contain a set of states from
the analysis. Each of these states will have the same control expression, but may have different
instrumentation, environment, or continuation. By associating states in this way, all paths through
the function can be represented at once.
The algorithm proceeds in three stages: caching calls, caching returns, and stepping through

each function. Calls are entry points to functions, those states that follow an apply state. They are
identified by the function they enter. Returns are states following atomic expression states, they
are identified by the continuation address of the atomic state.
The CFG creation step is similar to an abstract machine itself. The injection function to start it

constructs a flow node (“node” is used to distinguish from the states of the AAM analysis) with a
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⟨flow {...⟨eval ae, ρ̂,, σ̂ ,, halt⟩...}⟩ ; ⟨halt-with ae, ρ̂, σ̂ ⟩ [Halt]

⟨flow {...ς̂ ...}⟩ ; ⟨stuck-at ς̂⟩, where {} = ŝtep(ς̂) [Stuck]

⟨flow ς̂set ⟩ ; ⟨exit-to ς̂ ′⟩, where [Exit]
ς̂ = ⟨eval ae, _, _, _, _, âκ ⟩ ∈ ς̂set
ς̂ ′ ∈ ŝtep(ς̂)

⟨flow ς̂set ⟩ ; ⟨no-return ς̂r ⟩, where [NoReturn]

ς̂ ′ = ⟨apply _, _, _, _, _⟩ ∈ ς̂set
ς̂r = ⟨eval _, _, _, _, _, âκ ⟩ ∈ ŝtep(ς̂ ′)
{} = returns(âκ )

⟨flow ς̂set ⟩ ; ⟨flow r̂ ⟩, where [Return]

ς̂ ′set =
⋃

ς̂ ′=⟨apply _,_,_,_,_⟩∈ς̂set

ŝtep(ς̂ ′)

r̂ =
⋃

⟨eval _,_,_,_,_, âκ ⟩∈ς̂ ′set

returns(âκ )

⟨flow ς̂set ⟩ ; ⟨flow ς̂ ′set ⟩, where [Step]

ς̂ ′set =
⋃

ς̂ ′∈ς̂set

ŝtep(ς̂ ′)

Fig. 3. Segmentation rules

set of calls from our cache. It then follows the rules in Figure 3. The first of these recognize halt or
stuck states in the analysis, generating appropriate terminal nodes. The next is for natural exits
from the function, that is, when the control has been reduced to an atomic expression but there is
still a continuation to step into.
Rule [NoReturn] in Figure 3 is a failure case of [Return], which may occur when control

passes into an infinite loop after a call to another function. Otherwise, the return flow node consists
of all states that return to this point in the function after the calls in the previous states. The
algorithm generates them by first stepping each state into the called function. This will provide the
continuation addresses allocated during the step. Next the cache of returns is accessed with each
address, to generate all the returns to that address. The final rule is [Step], which is used when the
others don’t apply, and simply steps each state in our flow node and collects them into another.

4 CONCLUSIONS AND FUTUREWORK
This paper describes an algorithm for generating single-function CFGs from a whole-program
CFG generated by an AAM analysis. It collects multiple versions together by searching for their
starting points and avoids detail changes by flowing through them in unison. It steps over other
functions by jumping to return addresses after a call. The current semantics have no intra-function
branching, though future versions will. This will require an additional separation step in order to
keep control expressions aligned. CGFs generated by this method are easier to understand and to
further analyze than whole-program CFGs.
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