
Random Access Zipper - RAZ
Simple, Persistent Data Structure for Sequences

There are problems with all these sequence types
Non-intuitive edits Complex structure

The RAZ overcomes these problems

The RAZ has two main forms

Some additional features of the RAZ

A binary tree consists
of ‘branches’ that
hold two elements

and ‘leaves’ that hold
one. The structure
spreads out like a

tree. We can use it as
a sequence if we only

store data in the
leaves.

N moves

type ‘a list =
| Nil
| Cons of ‘a * ‘a list

type ‘a zip =
 ‘a list * ‘a list

Zipper A zipper is a cursor
within a sequence.
It consists of a pair
of lists. The heads
of the lists are the

two elements
nearest the cursor,
and the lists extend

away from it.

A Zipper is easy to edit by performing list
insertion or deletion at the cursor. However, to

move to a new location requires moves
proportional to the distance.

Tree
type ‘a tree =
| Nil
| Leaf of ‘a
| Bin of
 ‘a tree * ‘a tree

A binary tree is
easy to search

through because it
is so shallow.

However, it must be
reconfigured after
edits to maintain

this structure Insert here?

type ‘a node =
| Node2 of ‘a * `a
| Node3 of ‘a * `a * `a
type ‘a digit =
| One of ‘a
| Two of ‘a * ‘a
| Three of ‘a * ‘a * ‘a
| Four of ‘a * ‘a * ‘a * ‘a
type ‘a finger =
| Nil
| Single of ‘a
| Deep of

 ‘a digit
* (‘a node) finger
* ’a digit

Fingertree
A Fingertree is a

structure
designed for
sequences.
Edits can be
made at the

head or tail of
the sequence.
Fingertrees can
be split in two to
access the inner
items, and then
appended back

together.

Fingertrees have many cases
in their structure. One is

recursive and nested. This
makes algorithms complex.

type ‘a list =
| Nil
| Cons of ‘a * ‘a list
| Level of lev * ‘a list
| Tree of
 ‘a tree * ‘a list

type ‘a raz =
 ‘a list * ‘a * ‘a list

type ‘a tree =
| Nil
| Leaf of ‘a
| Bin of lev * item_cnt
 * ’a tree * ‘a tree

focus: pos ->
 ‘a tree -> ‘a raz
unfocus: ‘a raz -> ‘a tree

fold_up: (‘a -> ‘b) ->
 (‘b -> ‘b -> ‘b) ->
 ’a tree -> ‘b

move: dir ->
 ‘a zip -> ‘a zip
insert: dir -> ‘a ->
 ‘a zip -> ‘a zip
remove: dir ->
 ‘a zip -> ‘a zip

Random Access Zipper

by Kyle Headley
More info at kyleheadley.github.io

Tree

List

Zipper

+

+

A RAZ is balanced by referring
to stored values in the structure

called ‘levels’. Subtrees are
always of lower level than their

containing nodes. We use
random levels so that they will

be appropriate for any situation.

The RAZ can be in list form
as well as tree form, so we

store levels between
elements, just like tree

nodes are between
subtrees.

Tree

Zipper

a

a

b

b

c

c d

d

e

e

We focus the RAZ
on a location to be

edited. We also
unfocus to use

algorithms
designed for trees.

The
correspondence of

levels (brown
diamonds) allows

the RAZ to be
converted between
forms at will without
loss of information.

raz
|> alter left b
|> insert left c
|> insert right n
|> remove right
|> unfocus
|> focus 1
|> insert left n

a n d e
a b d e
a b c d e
a b c d n e
a b c d e
a b c d e
a b c d e
a n b c d e

fold_up exploits the independence of subtrees,
producing results that could be cached because

subtrees do not change if they are not edited.

Usage example

Simple edits are performed as
expected. One element is the
focus of the operation, shown
above in bold and underlined.
Focus and unfocus are used to

move the cursor to another
element.

c d e

a b

Unfocus

Focus on ‘b’

Insert left n

a bn

Focusing
and unfocusing

change the
structure and

editable state of
the RAZ. Any

subtrees that are
not on the path of
the focus are not

affected. This
avoids extra

work. No changes to the right

Slow access

1

1

2

2

2

1

6

6

6

9

9

9

92 4

O(n)

O(1)

O(log n)

0
10
20
30
40
50
60
70
80
90

100

0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72 76 80 84 88 92 96 10
0

Ti
m
e/
(s
)

Insertions/(x100k)

Single/Insertions

RAZ FingertreeWe built a sequence from scratch
by inserting single elements into
random places until we reached

a target size. We plotted the
median of three trials for each of
100 sizes. The RAZ came out

ahead by nearly 10%.

let focus pos tree =
 let rec focus = fun pos tree (l, r) ->
 match tree with
 | Nil -> failwith “focus: internal Nil"
 | Leaf(elm) ->
 assert (pos == 0);
 (l,elm,r)
 | Bin(lv, _, branch_l, branch_r) ->
 let cnt = item_count branch_l in
 if pos < cnt
 then
 focus pos branch_l
 (l, Level(lv, Tree(branch_r, r)))
 else
 let new_pos = (pos - cnt) in
 focus new_pos branch_r
 (Level(lv, Tree(branch_l, l)), r)
in focus pos tree (Nil, Nil)

let alter : dir -> 'a -> 'a raz -> 'a raz =
 let rec alter new side zip = match zip with
 | Nil -> failwith “alter: past end of seq"
 | Cons(_,rest) -> Cons(new,rest)
 | Level(lv,rest) -> Level(lv,alter new side rest)
 | Tree _ -> alter new side (trim side zip)
 in fun side elm (l,e,r) -> match side with
 | L -> (alter elm L l,e,r)
 | R -> (l,e,alter elm R r)

Fast Access

Probabilistic
Balance

Simple Code
The RAZ was implemented in OCaml in under 200
lines of code. Some design choices were made to
amplify this simplicity. Programmers can implement

their own modifications with confidence.

Below is the common pattern for all local edits. It’s
just a pattern match over inputs. And only one line
is needed per match. There is even common logic

that appears in each local edit.

Focus is easy because the accumulator is the zipper
form of the RAZ, but without the focused element.

We insert whole subtrees with their level into the
accumulator so that we don’t have to rebalance later.

5

3 3 3 3

A balanced Binary tree will
have four times as many
elements at height 3 than
elements of height 5. We
select random numbers
from this distribution to

balance the RAZ.

Coin Flips
T,H,T
H,H,T,T,T
H x4,T x5
H x999, T x1000

Ratio
0.500
0.666
0.800
0.999

Random Balance Scales Well

All these coin flip trials have
one more tails than heads,
but the ratio gets closer to
1.0 as more flips are made.

c d?

When we insert a new level,
we choose a random number.
This helps simplify the coding

and use of the RAZ. When
converting to a tree form, the

relative levels are used to
determine node heights.

Random insertions don’t break structure

T,H,T,H,T,H,T,H,T,H,T

 T

T,T,H,T,H,T,T,H,H,H,T

Where could you insert a T into
these sequences without

ruining the pattern? Nowhere in
the first and anywhere in the
second. The RAZ is prepared

for insertions anywhere.

With the RAZ, we have Accessibility,
Editability, Simplicity, and Speed

Editable List: Insert • Remove • Alter • Move • Goto

