Random Access Zipper

RAL

Presented by Kyle Headley TFP’16 College Park

Functional programmers
want simple data types

What do we have
for sequences”

Zippers are great

Zippers are great

type ‘a list =
| Nil
| Cons of ‘a *x ‘a list

type ‘a zip =
‘a list x ‘a list

Zippers are great

type ‘a list =
| Nil
| Cons of ‘a *x ‘a list

type ‘a zip =
‘a list x ‘a list

¢ <

[zip is a Cursor

Zippers are great

type ‘a list = move: dir —>
| Nil ‘a zip —> ‘a zip
| Cons of ‘a *x ‘a list insert: dir —> ‘a —>
| ‘a zip —> ‘a zip
type ‘a zip = remove: dir —>
‘a list x ‘a list ‘a zip -> ‘a zip

SIS EE @

Zippers are great

type ‘a list = move: dir —
| Nil ‘a zip —> ‘a zip
| Cons of ‘a *x ‘a list insert: dir —> ‘a —>
‘a zip —> ‘a zip
type ‘a zip = remove: dir —
‘a list x ‘a list ‘3 ZiD -> ‘g zip
AII O(1

.QMO

Zlppers are great

type ‘a list = move: dir -
| N1l ‘a zip —> ‘a Z1p
| Cons of ‘a *x ‘a list insert: dir —> ‘a —>
‘a zip —> ‘a zip
type ‘a zip = remove: dir —>
‘a list x ‘a list ‘a zip -> ‘a zip

I I E&E®

Problem: Slow random access

Zippers are great

type ‘a list = move: dir —>
| Nil ‘a zip —> ‘a zip
| Cons of ‘a *x ‘a list insert: dir —> ‘a —>
‘a zip —> ‘a zip
type ‘a zip = remove: dir —>
‘a list x ‘a list ‘a zip -> ‘a zip

o 00000

FRequires N moves]

Problem: Slow random access

Irees are great

Irees are great

type ‘a tree =

Nil

Leaf of ‘a

Bin of ‘a tree x ‘a tree

Irees are great

type ‘a tree = insert: pos —> ‘a —> ‘a tree —>
Nil ‘a tree
Leaf of ‘a find: pos —> ‘a tree —> ‘a
Bin of ‘a tree x 'a tree| remove: pos —>

‘a tree —> ‘a tree

Irees are great

type ‘a tree = insert: pos —> ‘a —> ‘a tree —>
Nil ‘a tree
Leaf of ‘a find: pos —> ‘a tree —> ‘a
Bin of ‘a tree x 'a tree| remove: pos —>

‘a tree —> ‘a tree

V All O(log n)!

(w/meta data)

Irees are great

type ‘a tree =

Nil
Leaf of ‘a
Bin of ‘a tree x

‘a tree

insert: pos —> ‘a —> ‘a tree —>
‘a tree
find: pos —> ‘a tree —> ‘a
remove: pos —>
‘a tree —> ‘a tree
fold _up: (‘a — ‘b)) —

(‘b —> ‘b —> ‘b)) —>
'a tree —> ‘b —>

‘b

Irees are great

type ‘a tree =

Nil
Leaf of
Bin of

{

a
‘a tree x

‘a tree

{

insert: pos —> ‘a —> ‘a tree —>
‘a tree

find: pos —> ‘a tree —>
remove: pos —>

‘a tree —> ‘a tree

{

d

fold up: (‘a —> ‘b)) —>
(‘b —> ‘b —> ‘b)) —>
'a tree —> ‘b —> ‘Db

|

Nice incremental and
parallel properties

Irees are great

type ‘a tree = insert: pos —> ‘a —> ‘a tree —>
Nil ‘a tree
Leaf of ‘a find: pos —> ‘a tree —> ‘a
Bin of ‘a tree x 'a tree| remove: pos —>

‘a tree —> ‘a tree

<:> fold_up: (‘a —> ‘b) —
(‘b —> ‘b —> ‘b)) —>
'a tree —> ‘b —> ‘D

() ()
& & @

Problem: Reasoning about edits

Irees are great

type ‘a tree = insert: pos —> ‘a —> ‘a tree —>
Nil ‘a tree
Leaf of ‘a find: pos —> ‘a tree —> ‘a
Bin of ‘a tree x 'a tree| remove: pos —>

‘a tree —> ‘a tree

(A3 fold_up: (‘a —> ‘b) —

- (‘b —> ‘b —> ‘b)) —>
(A>

'a tree —> ‘b —> ‘Db
‘llll) !: ‘llll’ A ‘llll)

Insert here? I—ow does rebalance work”?]

Problem. Reasoning about edits

-ingertrees are great

-ingertrees are great

first: ‘a finger —> ‘a
last: ‘a finger —> ‘a
cons: ‘a —>

{ . { .

a finger —> ‘a finger
snoc: ‘a —>

‘a finger —> ‘a finger

-ingertrees are great

first: ‘a finger —> ‘a
last: ‘a finger —> ‘a
cons: ‘a —>

{ . { .

a finger —> ‘a finger
snoc: ‘a —>

‘a finger —> ‘a finger

All O(1)!
(amortized)

-ingertrees are great

first: ‘a finger —> ‘a
last: ‘a finger —> ‘a
cons: ‘a —>

{ . { .

a finger —> ‘a finger
snoc: ‘a >

{ . { .

a finger —> ‘a finger

split: pos —> ‘a finger —>

(‘a finger, ‘a finger)
append: ‘a finger —> ‘a finger
-> ‘a finger —> ‘a finger

-ingertrees are great

{

first: ‘a finger —> ‘a
last: ‘a finger —> ‘a
cons: ‘a —>

{ . { .

a finger —> ‘a finger
snoc: ‘a >

{ . { .

a finger —> ‘a finger

split: pos —> ‘a finger —>

(‘a finger, ‘a finger)
append: ‘a finger —> ‘a finger
-> ‘a finger —> ‘a finger

FBoth O(log n)!

-ingertrees are great

first: ‘a finger —> ‘a
last: ‘a finger —> ‘a
cons: ‘a —>

{ . { .

a finger —> ‘a finger
snoc: ‘a —>

‘a finger —> ‘a finger

split: pos —> ‘a finger —>

(‘a finger, ‘a finger)
append: ‘a finger —> ‘a finger
-> ‘a finger —> ‘a finger

Problem: Not so simple

-ingertrees are great

type ‘a node = first: ‘a finger —-> ‘a

| Node2 of ‘a * "a last: ‘a finger —> ‘a

| Node3 of ‘a * a x 'a cons: ‘a —>

type ‘a digit = ‘a finger —> ‘a finger
One of ‘a SNoC: ‘a —>
Two of ‘a x ‘a ‘a finger —> ‘a finger
Three of ‘a % ‘a *x ‘a
Four of ‘a * ‘a *x ‘a x ‘a

type ‘a finger =
N1l split: pos —> ‘a finger —>
Single of ‘a (‘a finger, ‘a finger)
Deep ot append: ‘a finger —> ‘a finger

a digit —> ‘a finger —> ‘a finger

* (‘a node) finger
* "a digit

Problem: Not so simple

-ingertrees are great

{

type ‘a node = first: ‘a finger —> ‘a

| Node2 of ‘a * "a last: ‘a finger —> ‘a

| Node3 of ‘a *x "a x a cons: ‘a —>

type ‘a digit = ‘a finger —> ‘a finger
One of ‘a snoc: ‘a —>
Two of ‘a % ‘a ‘a finger —> ‘a finger
Three of 'a x ‘a % ‘a
Four of ‘a % ‘a x ‘a *x ‘a

type ‘a finger =
Nil split: pos —> ‘a finger —>
Single of ‘a (‘a finger, ‘a finger)
Deep of append: ‘a finger —> ‘a finger

a digit -> ‘a finger —> ‘a finger

* (‘a node) finger
* "a digit

Nested type
Problem: Not so simple

Alternative:
Random Access Zipper

e Accessible
e Editable
e Simple

Using a RAZ

raz abcde

Using a RAZ

raz abcde

Focused Element

Using a RAZ

|> 1nsert left n anbocde

Using a RAZ

> remove left abcde

Using a RAZ

|> remove right abde

Using a RAZ

|> unfocus abde

Using a RAZ

|> focus 0 abde

Using a RAZ

|> alter right n ande

Ihe RAZ Is great

Ihe RAZ Is great

type ‘a tree
Nil

Leaf of ‘a
Bin ofdlev * item_c.>
* 'a tree x "a tree

A Tree

Ihe RAZ Is great

type ‘a tree

Nil

Leaf of ‘a .
x 'a tree *x 'a tree

type ‘a list =
| N1l

[Tréé“bf ‘a tree x ‘a list

N

INn a list

Ihe RAZ Is great

type ‘a tree =

Nil

Leaf of ‘a
Bin of{ev * item_c>
* 'a tree x 'a tree

type ‘a list
| N1l

_Cons of ‘a x ‘a list
(_Level Bf lev x ‘a list
| Tree of ‘a tree *x ‘a list

type ‘a raz =
‘a list x ‘a *x ‘a list

As a zipper

Ihe RAZ Is great

type ‘a tree
Nil
Leaf of ‘a

fold _up: (‘a —> ‘b)) —
(‘b —> ‘b —> ‘b)) —>
'a tree —> ‘b —> ‘Db

Bin of lev x item_c
* 'a tree x ‘a tree
type ‘a list =
Nil
Cons of ‘a *x ‘a list

Level of lev *x ‘a list
Tree of ‘a tree x ‘a list

type ‘a raz

‘a list *

‘a x ‘a list

Y Still get tree info

I'he RAZ Is great

type ‘a tree
Nil

fold _up: (‘a —> ‘b)) —
(‘b —> ‘b —> ‘b)) —>

Leaf of ‘a '3 tree —> ‘D —> ‘b
Bin of lev % item_c
* 'a tree x ‘a tree
‘ : _ move: dir —>
tyﬁil a list = ‘a zip —> ‘a zip
Cons of ‘a * ‘a list lnsert: dir —> ‘a —>
Level of lev x ‘a list d Z}p —> 'a z1p
Tree of ‘a tree x ‘a list remove: dir —> |
‘a zip —> ‘a zip
type ‘a raz =
‘a list * ‘a x ‘a list /Hl()(1)!]

The RAZ IS great

type ‘a tree = fold _up- ‘a > ‘b)) —
Nil (‘b — ‘b —> ‘b)) —>
Leaf of ‘a 'a tree —> ‘b —> ‘D

Bin of lev % item_c
*x 'a tree x ‘a tree

. - move: dir —>
tyﬁgl a list = 'a 7ip —> ‘a zip
i | . ‘
Cons of ‘a x ‘a list insert: dir —> ‘a —>

‘ . { .
Level of lev *x ‘a list a zip —> ‘a z1p
Tree of ‘a tree x ‘a list remove: dir ->

‘a zip —> ‘a zip

type ‘a raz = |
‘a list *x ‘a x ‘a list focus: val —>

‘a tree —> ‘a raz

unfocus: ‘a raz — ‘a tree

N
Both O(log n)!

(plus net insertions)

Zipper of Trees

DA
o

Zipper of Trees

Foous |
w—(a) —
5 A

Zipper of Trees

Nil o—é%N

Leaves
Wlth data

Zipper of Trees

0RO
A ATA

[Tree Nodes w/ Levels]

|

Balance

Balance

We use a Because of the way
orobabillistic balance, randomness behaves,
inserting random we get good balance at
numbers as levels scale

Balance

We use a Because of the way
orobabillistic balance, randomness behaves,
inserting random we get good balance at
numbers as levels scale

Choose a random level
based on balanced
tree height distribution

Two Forms of RAZ

Two Forms of RAZ

Zipper

Tvvc> Forms of RAZ

A/\Z\

A

TWO Forms of RAZ

TWO Forms of RAZ

Leve
the

lnvariants

S ONn each

focused e

side of
ement

o(v)e

lnvariants

L evels on each side of ‘ N ‘

the focused element

L evels between each
element except Nil

lnvariants

L evels on each side of ‘ N ‘

the focused element

No Nil values Iin an
unfocused RAZ

L evels between each
element except Nil

Closer look at our
example

| ISt-lIke Insertion

—@*O*A -
o

| ISt-lIke Insertion

0,
—()-*(0)*A
<

| ISt-lIke Insertion

—D*OO*A—
S| K AT

| ISt-lIke Insertion

@*@7%

~ Insert Level

| ISt-lIke Removal

) DA -
e

| ISt-lIke Removal

—@*O*A -
o

Trimmimg Irees

Trimmimg Irees

RCROL
W AA

Trimmimg Irees

T @"‘@;'AZA&

Trimmimg Irees

L OMOMOM N
AAA

Trimmimg Irees

—@O*O*A -
AAA

Untfocusing

—@O*O*A -
AAA

Untocusl ﬂi el

—@O*O*A -
AAA

Unfocusl ﬂi el

O O A
AAA

Unfocusl ﬂi el

X
O O*A -
AAA

Untocusl ﬂi el

e

Untocusl ﬂi el

N

Un
focusin
gwor'®

Untocusl r]1 el

=N

A A/\A A

Jn
1 V\eﬁ

Switch to code

FOCUS ONn FOCUS

let focus pos tree =
let rec focus = fun pos tree (1, r) —
match tree with
| N1l —> failwith “focus: internal Nil"
| Leaf(elm) —>
assert (pos == 0);
(1,elm,r)
| Bin(lv, _, branch_1, branch_r) —
let cnt = 1tem_count branch_l 1n
1T pos < cnt
then
focus pos branch_l
(1, Level(lv, Tree(branch_r, r)))
else
let new_pos = (pos - cnt) 1in
focus new_pos branch_r
(Level(1lv, Tree(branch_1, 1)), r)
in focus pos tree (Nil, Nil)

FOCUS ONn FOCUS

let focus pos tree =
let rec focus = fun pos tree (1, r) —>

Recursive function
with accumulator

in focus pos tree (Nil, Nil)

FOCUS ONn FOCUS

match tree with

A single pattern match!

FOCUS ONn FOCUS

| Leaf(elm) —
assert (pos == 0);
(1,elm,r)

Return the accumulator as
a RAZ focused on this
element

FOCUS ONn FOCUS

| Bin(lv, _, branch_1, branch_r) —
let cnt = 1tem_count branch_l 1n

1T pos < cnt Branch based on
which side has the
focus element

FOCUS ONn FOCUS

On left, recurse on
left branch with right
branch in right

if pos < cnt accumulator

then
focus pos branch_l
(1, Level(lv, Tree(branch_r, r)))

FOCUS ONn FOCUS

if pos < cnt On right, recurse on
right branch with left
branch in left

else accumulator

let new_pos = (pos - cnt) in
focus new_pos branch_r
(Level(1lv, Tree(branch_1, 1)), r)

Focus on Local Edits

let alter : dir —> 'a —> 'a raz -> 'a raz =

let rec alter new side zip = match zip with

Nil —> failwith “alter: past end of seq"

Cons(,rest) —> Cons(new, rest)

Level(lv, rest) —> Level(lv,alter new side rest)
Tree _ —> alter new side (trim side zip)

in fun side elm (1,e,r) —> match side with

| L —> (alter elm L 1,e,r)

| R —> (1,e,alter elm R r)

Focus on Local Edits

| ocal edits take directions

let alter : dir —> '

Focus on Local Edits

let rec alter new side zip = match zip with

in fun side elm (1,e,r) —> match side with

WO pattern matches

Focus on Local Edits

match side with
| L —> (alter elm L 1,e,r)
| R —> (1,e,alter elm R r)

Edit is similar for each side

Focus on Local Edits

match zip with
| Nil —> failwith “alter: past end of seq"

| Tree _ —> alter new side (trim side zip)

TwOo common cases

Focus on Local Edits

We always reach a level first

| Level(lv,rest) —> Level(lv,alter new side rest)

Focus on Local Edits

Return new element

EXperiments

EXperiments

RAZ in OCaml

EXperiments

RAZ in OCaml

Fingertree In
OCaml

EXperiments

RAZ in OCaml
Insertion and removal

at random point

Fingertree In
OCaml

EXperiments

RAZ in OCaml
Insertion and removal

at random point

Fingertree In

OCaml| Insertion at

random point

lnsertion, Removal

Insertions and Deletions

100
90
30
70
60
50
40
30
20
10

e RA = Fingertree

Time (s)

O < 00 N O O < 0N OO F 0N OO < 0 N
T A NN NN S T DN O O O~

O O < 0
N~ 6O o0 OO

N O
o O

100

Insertions (x100k)

iNnsertion at ranaom

Single Insertions

100
90
30
70
60
50
40
30
20
10

e———RA/ e——Fingertree

Time (s)

O <t oo N O O T 60N O O T 0N OO T 0N L
I N AN ANOOHO N < TN N OO O NN

O < &0
c0 o0 OO

N O
o O

100

Insertions (x100k)

iNnsertion at ranaom

Single Insertions

100
90
30
70
60
50
40
30
20
10

0

e———RA/ e——Fingertree

Time (s)

O < o0 N LW O
— - N

24
28
32
36
0
4
8
2
6
0)
64
68

Insertions (x100k)

Simplicity as performance?

Random Access Zipper

 Accessible
e Editable

e Simple

* ast

Random Access Zipper

Simple enough to
INnclude these
orinciples in your own
data types!

