
RAZ

Random Access Zipper

Presented by Kyle Headley TFP’16 College Park

What do we have
for sequences?

Functional programmers
want simple data types

Zippers are great

Zippers are great
type ‘a list =
| Nil
| Cons of ‘a * ‘a list

type ‘a zip =
 ‘a list * ‘a list

Zippers are great

zip is a Cursor

type ‘a list =
| Nil
| Cons of ‘a * ‘a list

type ‘a zip =
 ‘a list * ‘a list

Zippers are great
type ‘a list =
| Nil
| Cons of ‘a * ‘a list

type ‘a zip =
 ‘a list * ‘a list

move: dir ->
 ‘a zip -> ‘a zip
insert: dir -> ‘a ->
 ‘a zip -> ‘a zip
remove: dir ->
 ‘a zip -> ‘a zip

Zippers are great

All O(1)!

type ‘a list =
| Nil
| Cons of ‘a * ‘a list

type ‘a zip =
 ‘a list * ‘a list

move: dir ->
 ‘a zip -> ‘a zip
insert: dir -> ‘a ->
 ‘a zip -> ‘a zip
remove: dir ->
 ‘a zip -> ‘a zip

Zippers are great

Problem: Slow random access

type ‘a list =
| Nil
| Cons of ‘a * ‘a list

type ‘a zip =
 ‘a list * ‘a list

move: dir ->
 ‘a zip -> ‘a zip
insert: dir -> ‘a ->
 ‘a zip -> ‘a zip
remove: dir ->
 ‘a zip -> ‘a zip

Zippers are great

Problem: Slow random access
Requires n moves

type ‘a list =
| Nil
| Cons of ‘a * ‘a list

type ‘a zip =
 ‘a list * ‘a list

move: dir ->
 ‘a zip -> ‘a zip
insert: dir -> ‘a ->
 ‘a zip -> ‘a zip
remove: dir ->
 ‘a zip -> ‘a zip

Trees are great

Trees are great
type ‘a tree =
| Nil
| Leaf of ‘a
| Bin of ‘a tree * ‘a tree

Trees are great
type ‘a tree =
| Nil
| Leaf of ‘a
| Bin of ‘a tree * ‘a tree

insert: pos -> ‘a -> ‘a tree ->
‘a tree
find: pos -> ‘a tree -> ‘a
remove: pos ->
 ‘a tree -> ‘a tree

Trees are great
type ‘a tree =
| Nil
| Leaf of ‘a
| Bin of ‘a tree * ‘a tree

All O(log n)!
(w/meta data)

insert: pos -> ‘a -> ‘a tree ->
‘a tree
find: pos -> ‘a tree -> ‘a
remove: pos ->
 ‘a tree -> ‘a tree

Trees are great
type ‘a tree =
| Nil
| Leaf of ‘a
| Bin of ‘a tree * ‘a tree

fold_up: (‘a -> ‘b) ->
 (‘b -> ‘b -> ‘b) ->
 ’a tree -> ‘b -> ‘b

insert: pos -> ‘a -> ‘a tree ->
‘a tree
find: pos -> ‘a tree -> ‘a
remove: pos ->
 ‘a tree -> ‘a tree

Trees are great
type ‘a tree =
| Nil
| Leaf of ‘a
| Bin of ‘a tree * ‘a tree

Nice incremental and
parallel properties

fold_up: (‘a -> ‘b) ->
 (‘b -> ‘b -> ‘b) ->
 ’a tree -> ‘b -> ‘b

insert: pos -> ‘a -> ‘a tree ->
‘a tree
find: pos -> ‘a tree -> ‘a
remove: pos ->
 ‘a tree -> ‘a tree

Trees are great
type ‘a tree =
| Nil
| Leaf of ‘a
| Bin of ‘a tree * ‘a tree

Problem: Reasoning about edits

fold_up: (‘a -> ‘b) ->
 (‘b -> ‘b -> ‘b) ->
 ’a tree -> ‘b -> ‘b

insert: pos -> ‘a -> ‘a tree ->
‘a tree
find: pos -> ‘a tree -> ‘a
remove: pos ->
 ‘a tree -> ‘a tree

Trees are great

Problem: Reasoning about edits

type ‘a tree =
| Nil
| Leaf of ‘a
| Bin of ‘a tree * ‘a tree

How does rebalance work?insert here?

fold_up: (‘a -> ‘b) ->
 (‘b -> ‘b -> ‘b) ->
 ’a tree -> ‘b -> ‘b

insert: pos -> ‘a -> ‘a tree ->
‘a tree
find: pos -> ‘a tree -> ‘a
remove: pos ->
 ‘a tree -> ‘a tree

?

Fingertrees are great

Fingertrees are great
first: ‘a finger -> ‘a
last: ‘a finger -> ‘a
cons: ‘a ->
 ‘a finger -> ‘a finger
snoc: ‘a ->
 ‘a finger -> ‘a finger

Fingertrees are great

All O(1)!
(amortized)

first: ‘a finger -> ‘a
last: ‘a finger -> ‘a
cons: ‘a ->
 ‘a finger -> ‘a finger
snoc: ‘a ->
 ‘a finger -> ‘a finger

Fingertrees are great

split: pos -> ‘a finger ->
 (‘a finger, ‘a finger)
append: ‘a finger -> ‘a finger
-> ‘a finger -> ‘a finger

first: ‘a finger -> ‘a
last: ‘a finger -> ‘a
cons: ‘a ->
 ‘a finger -> ‘a finger
snoc: ‘a ->
 ‘a finger -> ‘a finger

Fingertrees are great

Both O(log n)!

first: ‘a finger -> ‘a
last: ‘a finger -> ‘a
cons: ‘a ->
 ‘a finger -> ‘a finger
snoc: ‘a ->
 ‘a finger -> ‘a finger

split: pos -> ‘a finger ->
 (‘a finger, ‘a finger)
append: ‘a finger -> ‘a finger
-> ‘a finger -> ‘a finger

Fingertrees are great

Problem: Not so simple

first: ‘a finger -> ‘a
last: ‘a finger -> ‘a
cons: ‘a ->
 ‘a finger -> ‘a finger
snoc: ‘a ->
 ‘a finger -> ‘a finger

split: pos -> ‘a finger ->
 (‘a finger, ‘a finger)
append: ‘a finger -> ‘a finger
-> ‘a finger -> ‘a finger

Fingertrees are great

Problem: Not so simple

type ‘a node =
| Node2 of ‘a * `a
| Node3 of ‘a * `a * `a
type ‘a digit =
| One of ‘a
| Two of ‘a * ‘a
| Three of ‘a * ‘a * ‘a
| Four of ‘a * ‘a * ‘a * ‘a
type ‘a finger =
| Nil
| Single of ‘a
| Deep of
 ‘a digit
* (‘a node) finger
* ’a digit

first: ‘a finger -> ‘a
last: ‘a finger -> ‘a
cons: ‘a ->
 ‘a finger -> ‘a finger
snoc: ‘a ->
 ‘a finger -> ‘a finger

split: pos -> ‘a finger ->
 (‘a finger, ‘a finger)
append: ‘a finger -> ‘a finger
-> ‘a finger -> ‘a finger

Fingertrees are great

Problem: Not so simple
Nested type

type ‘a node =
| Node2 of ‘a * `a
| Node3 of ‘a * `a * `a
type ‘a digit =
| One of ‘a
| Two of ‘a * ‘a
| Three of ‘a * ‘a * ‘a
| Four of ‘a * ‘a * ‘a * ‘a
type ‘a finger =
| Nil
| Single of ‘a
| Deep of
 ‘a digit
* (‘a node) finger
* ’a digit

first: ‘a finger -> ‘a
last: ‘a finger -> ‘a
cons: ‘a ->
 ‘a finger -> ‘a finger
snoc: ‘a ->
 ‘a finger -> ‘a finger

split: pos -> ‘a finger ->
 (‘a finger, ‘a finger)
append: ‘a finger -> ‘a finger
-> ‘a finger -> ‘a finger

Alternative:
Random Access Zipper

• Simple
• Editable
• Accessible

raz a b c d e

Using a RAZ

raz a b c d e

Using a RAZ

Focused Element

raz
|> insert left n

a b c d e
a n b c d e

Using a RAZ

raz
|> insert left n
|> remove left

a b c d e
a n b c d e
a b c d e

Using a RAZ

raz
|> insert left n
|> remove left
|> remove right

a b c d e
a n b c d e
a b c d e
a b d e

Using a RAZ

raz
|> insert left n
|> remove left
|> remove right
|> unfocus

a b c d e
a n b c d e
a b c d e
a b d e
a b d e

Using a RAZ

raz
|> insert left n
|> remove left
|> remove right
|> unfocus
|> focus 0

a b c d e
a n b c d e
a b c d e
a b d e
a b d e
a b d e

Using a RAZ

raz
|> insert left n
|> remove left
|> remove right
|> unfocus
|> focus 0
|> alter right n

a b c d e
a n b c d e
a b c d e
a b d e
a b d e
a b d e
a n d e

Using a RAZ

The RAZ is great

The RAZ is great
type ‘a tree =
| Nil
| Leaf of ‘a
| Bin of lev * item_c
 * ’a tree * ‘a tree

A Tree

The RAZ is great

type ‘a list =
| Nil
| Cons of ‘a * ‘a list
| Level of lev * ‘a list
| Tree of ‘a tree * ‘a list

In a list

type ‘a tree =
| Nil
| Leaf of ‘a
| Bin of lev * item_c
 * ’a tree * ‘a tree

The RAZ is great

type ‘a list =
| Nil
| Cons of ‘a * ‘a list
| Level of lev * ‘a list
| Tree of ‘a tree * ‘a list

type ‘a raz =
 ‘a list * ‘a * ‘a list

As a zipper

type ‘a tree =
| Nil
| Leaf of ‘a
| Bin of lev * item_c
 * ’a tree * ‘a tree

The RAZ is great

type ‘a list =
| Nil
| Cons of ‘a * ‘a list
| Level of lev * ‘a list
| Tree of ‘a tree * ‘a list

type ‘a raz =
 ‘a list * ‘a * ‘a list

Still get tree info

type ‘a tree =
| Nil
| Leaf of ‘a
| Bin of lev * item_c
 * ’a tree * ‘a tree

fold_up: (‘a -> ‘b) ->
 (‘b -> ‘b -> ‘b) ->
 ’a tree -> ‘b -> ‘b

The RAZ is great

type ‘a list =
| Nil
| Cons of ‘a * ‘a list
| Level of lev * ‘a list
| Tree of ‘a tree * ‘a list

type ‘a raz =
 ‘a list * ‘a * ‘a list All O(1)!

type ‘a tree =
| Nil
| Leaf of ‘a
| Bin of lev * item_c
 * ’a tree * ‘a tree

fold_up: (‘a -> ‘b) ->
 (‘b -> ‘b -> ‘b) ->
 ’a tree -> ‘b -> ‘b

move: dir ->
 ‘a zip -> ‘a zip
insert: dir -> ‘a ->
 ‘a zip -> ‘a zip
remove: dir ->
 ‘a zip -> ‘a zip

The RAZ is great

type ‘a list =
| Nil
| Cons of ‘a * ‘a list
| Level of lev * ‘a list
| Tree of ‘a tree * ‘a list

type ‘a raz =
 ‘a list * ‘a * ‘a list focus: val ->

 ‘a tree -> ‘a raz
unfocus: ‘a raz -> ‘a tree

Both O(log n)!
(plus net insertions)

type ‘a tree =
| Nil
| Leaf of ‘a
| Bin of lev * item_c
 * ’a tree * ‘a tree

fold_up: (‘a -> ‘b) ->
 (‘b -> ‘b -> ‘b) ->
 ’a tree -> ‘b -> ‘b

move: dir ->
 ‘a zip -> ‘a zip
insert: dir -> ‘a ->
 ‘a zip -> ‘a zip
remove: dir ->
 ‘a zip -> ‘a zip

Zipper of Trees

edc

Nil b Nila

Zipper of Trees

edc

Nil b Nila

Focus

Zipper of Trees

edc

Nil b Nila

List elt
with data

List elt
with tree

Leaves
with data

Zipper of Trees

edc

Nil b Nila

Tree Nodes w/ Levels

Levels

Balance

Balance
We use a

probabilistic balance,
inserting random
numbers as levels

Because of the way
randomness behaves,

we get good balance at
scale

Balance

Choose a random level
based on balanced

tree height distribution 3

5

33 3

We use a
probabilistic balance,

inserting random
numbers as levels

Because of the way
randomness behaves,

we get good balance at
scale

Two Forms of RAZ

Two Forms of RAZ

a cb d e

Zipper

Two Forms of RAZ

a e

Tree

dcb

Two Forms of RAZ

a cb d e

Zipper

a e

Tree

Focus Unfocus

dcb

Two Forms of RAZ

a cb d e

Zipper

a e

Tree

dcb

Invariants
Levels on each side of
the focused element b

Invariants
Levels on each side of
the focused element

Levels between each
element except Nil

b

b c

Invariants
bLevels on each side of

the focused element

No Nil values in an
unfocused RAZ

Levels between each
element except Nil b c

Closer look at our
example

List-like Insertion

edc

ba

List-like Insertion

edc

ba

n

List-like Insertion

edc

bna

Insert Element

List-like Insertion

edc

bna

Insert Level

edc

bna

List-like Removal

List-like Removal

edc

ba

Trimmimg Trees

edc

ba

Not a List Element

?

Trimmimg Trees

edc

ba

?

Trimmimg Trees

cba

? ed

Trimmimg Trees

ed

ba c

Trimmimg Trees

ed

ba

Unfocusing

ed

ba

Unfocusing

ed

ba

In brief

Unfocusing

ed

ba

In brief

Unfocusing

ed

ba

Join

In brief

Unfocusing

edba

In brief

Unfocusing

edba

In brief

Unfocusing

edba

In brief

Unfocusing

edba

In brief

Unfocusing

edba

In brief

Switch to code

 let focus pos tree =
 let rec focus = fun pos tree (l, r) ->
 match tree with
 | Nil -> failwith “focus: internal Nil"
 | Leaf(elm) ->
 assert (pos == 0);
 (l,elm,r)
 | Bin(lv, _, branch_l, branch_r) ->
 let cnt = item_count branch_l in
 if pos < cnt
 then
 focus pos branch_l

 (l, Level(lv, Tree(branch_r, r)))
 else
 let new_pos = (pos - cnt) in

focus new_pos branch_r
 (Level(lv, Tree(branch_l, l)), r)

 in focus pos tree (Nil, Nil)

Focus on Focus

 let focus pos tree =
 let rec focus = fun pos tree (l, r) ->
 match tree with
 | Nil -> failwith “focus: internal Nil"
 | Leaf(elm) ->
 assert (pos == 0);
 (l,elm,r)
 | Bin(lv, _, branch_l, branch_r) ->
 let cnt = item_count branch_l in
 if pos < cnt
 then
 focus pos branch_l

 (l, Level(lv, Tree(branch_r, r)))
 else
 let new_pos = (pos - cnt) in

focus new_pos branch_r
 (Level(lv, Tree(branch_l, l)), r)

 in focus pos tree (Nil, Nil)

Focus on Focus
Recursive function
with accumulator

 let focus pos tree =
 let rec focus = fun pos tree (l, r) ->
 match tree with
 | Nil -> failwith “focus: internal Nil"
 | Leaf(elm) ->
 assert (pos == 0);
 (l,elm,r)
 | Bin(lv, _, branch_l, branch_r) ->
 let cnt = item_count branch_l in
 if pos < cnt
 then
 focus pos branch_l

 (l, Level(lv, Tree(branch_r, r)))
 else
 let new_pos = (pos - cnt) in

focus new_pos branch_r
 (Level(lv, Tree(branch_l, l)), r)

 in focus pos tree (Nil, Nil)

Focus on Focus

A single pattern match!

 let focus pos tree =
 let rec focus = fun pos tree (l, r) ->
 match tree with
 | Nil -> failwith “focus: internal Nil"
 | Leaf(elm) ->
 assert (pos == 0);
 (l,elm,r)
 | Bin(lv, _, branch_l, branch_r) ->
 let cnt = item_count branch_l in
 if pos < cnt
 then
 focus pos branch_l

 (l, Level(lv, Tree(branch_r, r)))
 else
 let new_pos = (pos - cnt) in

focus new_pos branch_r
 (Level(lv, Tree(branch_l, l)), r)

 in focus pos tree (Nil, Nil)

Focus on Focus

Return the accumulator as
a RAZ focused on this

element

 let focus pos tree =
 let rec focus = fun pos tree (l, r) ->
 match tree with
 | Nil -> failwith “focus: internal Nil"
 | Leaf(elm) ->
 assert (pos == 0);
 (l,elm,r)
 | Bin(lv, _, branch_l, branch_r) ->
 let cnt = item_count branch_l in
 if pos < cnt
 then
 focus pos branch_l

 (l, Level(lv, Tree(branch_r, r)))
 else
 let new_pos = (pos - cnt) in

focus new_pos branch_r
 (Level(lv, Tree(branch_l, l)), r)

 in focus pos tree (Nil, Nil)

Focus on Focus

Branch based on
which side has the

focus element

Focus on Focus

On left, recurse on
left branch with right

branch in right
accumulator

 let focus pos tree =
 let rec focus = fun pos tree (l, r) ->
 match tree with
 | Nil -> failwith “focus: internal Nil"
 | Leaf(elm) ->
 assert (pos == 0);
 (l,elm,r)
 | Bin(lv, _, branch_l, branch_r) ->
 let cnt = item_count branch_l in
 if pos < cnt
 then
 focus pos branch_l

 (l, Level(lv, Tree(branch_r, r)))
 else
 let new_pos = (pos - cnt) in

focus new_pos branch_r
 (Level(lv, Tree(branch_l, l)), r)

 in focus pos tree (Nil, Nil)

 let focus pos tree =
 let rec focus = fun pos tree (l, r) ->
 match tree with
 | Nil -> failwith “focus: internal Nil"
 | Leaf(elm) ->
 assert (pos == 0);
 (l,elm,r)
 | Bin(lv, _, branch_l, branch_r) ->
 let cnt = item_count branch_l in
 if pos < cnt
 then
 focus pos branch_l

 (l, Level(lv, Tree(branch_r, r)))
 else
 let new_pos = (pos - cnt) in

focus new_pos branch_r
 (Level(lv, Tree(branch_l, l)), r)

 in focus pos tree (Nil, Nil)

Focus on Focus

On right, recurse on
right branch with left

branch in left
accumulator

let alter : dir -> 'a -> 'a raz -> 'a raz =
 let rec alter new side zip = match zip with
 | Nil -> failwith “alter: past end of seq"
 | Cons(_,rest) -> Cons(new,rest)
 | Level(lv,rest) -> Level(lv,alter new side rest)
 | Tree _ -> alter new side (trim side zip)
 in fun side elm (l,e,r) -> match side with
 | L -> (alter elm L l,e,r)
 | R -> (l,e,alter elm R r)

Focus on Local Edits

let alter : dir -> 'a -> 'a raz -> 'a raz =
 let rec alter new side zip = match zip with
 | Nil -> failwith “alter: past end of seq"
 | Cons(_,rest) -> Cons(new,rest)
 | Level(lv,rest) -> Level(lv,alter new side rest)
 | Tree _ -> alter new side (trim side zip)
 in fun side elm (l,e,r) -> match side with
 | L -> (alter elm L l,e,r)
 | R -> (l,e,alter elm R r)

Focus on Local Edits
Local edits take directions

let alter : dir -> 'a -> 'a raz -> 'a raz =
 let rec alter new side zip = match zip with
 | Nil -> failwith “alter: past end of seq"
 | Cons(_,rest) -> Cons(new,rest)
 | Level(lv,rest) -> Level(lv,alter new side rest)
 | Tree _ -> alter new side (trim side zip)
 in fun side elm (l,e,r) -> match side with
 | L -> (alter elm L l,e,r)
 | R -> (l,e,alter elm R r)

Focus on Local Edits

Two pattern matches

let alter : dir -> 'a -> 'a raz -> 'a raz =
 let rec alter new side zip = match zip with
 | Nil -> failwith “alter: past end of seq"
 | Cons(_,rest) -> Cons(new,rest)
 | Level(lv,rest) -> Level(lv,alter new side rest)
 | Tree _ -> alter new side (trim side zip)
 in fun side elm (l,e,r) -> match side with
 | L -> (alter elm L l,e,r)
 | R -> (l,e,alter elm R r)

Focus on Local Edits

Edit is similar for each side

let alter : dir -> 'a -> 'a raz -> 'a raz =
 let rec alter new side zip = match zip with
 | Nil -> failwith “alter: past end of seq"
 | Cons(_,rest) -> Cons(new,rest)
 | Level(lv,rest) -> Level(lv,alter new side rest)
 | Tree _ -> alter new side (trim side zip)
 in fun side elm (l,e,r) -> match side with
 | L -> (alter elm L l,e,r)
 | R -> (l,e,alter elm R r)

Focus on Local Edits

Two common cases

let alter : dir -> 'a -> 'a raz -> 'a raz =
 let rec alter new side zip = match zip with
 | Nil -> failwith “alter: past end of seq"
 | Cons(_,rest) -> Cons(new,rest)
 | Level(lv,rest) -> Level(lv,alter new side rest)
 | Tree _ -> alter new side (trim side zip)
 in fun side elm (l,e,r) -> match side with
 | L -> (alter elm L l,e,r)
 | R -> (l,e,alter elm R r)

Focus on Local Edits
We always reach a level first

let alter : dir -> 'a -> 'a raz -> 'a raz =
 let rec alter new side zip = match zip with
 | Nil -> failwith “alter: past end of seq"
 | Cons(_,rest) -> Cons(new,rest)
 | Level(lv,rest) -> Level(lv,alter new side rest)
 | Tree _ -> alter new side (trim side zip)
 in fun side elm (l,e,r) -> match side with
 | L -> (alter elm L l,e,r)
 | R -> (l,e,alter elm R r)

Focus on Local Edits

Return new element

Experiments

Experiments

RAZ in OCaml

Experiments

RAZ in OCaml

Fingertree in
OCaml

Experiments

RAZ in OCaml

Fingertree in
OCaml

Insertion and removal
at random point

Experiments

Insertion at
random point

Insertion and removal
at random point

RAZ in OCaml

Fingertree in
OCaml

Insertion, Removal

0
10
20
30
40
50
60
70
80
90

100

0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72 76 80 84 88 92 96 10
0

Ti
m
e/
(s
)

Insertions/(x100k)

Insertions/and/Deletions

RAZ Fingertree

0
10
20
30
40
50
60
70
80
90

100

0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72 76 80 84 88 92 96 10
0

Ti
m
e/
(s
)

Insertions/(x100k)

Single/Insertions

RAZ Fingertree

Insertion at random

Insertion at random

Simplicity as performance?

0
10
20
30
40
50
60
70
80
90

100

0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72 76 80 84 88 92 96 10
0

Ti
m
e/
(s
)

Insertions/(x100k)

Single/Insertions

RAZ Fingertree

Random Access Zipper

• Simple
• Editable
• Accessible

• Fast

Random Access Zipper

Simple enough to
include these

principles in your own
data types!

