
Random Access Zipper

Kyle Headley∗

University of Colorado Boulder†

kyle.headley@colorado.edu

Incremental computation (IC) is ubiquitous in
modern software. A computation is incremental if
repeating it with a changed input is faster than from-
scratch recomputation. Most contemporary incre-
mental functionality is ad-hoc, built into the efficient
implementation of the system being designed. I have
been working on language- and library-based incre-
mental computation methods in order to increase the
efficiency of code in a more systematic way.

One important part of the research is to have good
functional data structures (side effects spoil memo-
ization). General purpose IC is best applied to sit-
uations where small changes have little effect on the
overall computation. Trees, for example, can be com-
puted over recursively from leaf to root, so that the
length of change propagation is logarithmic in the
number of elements. Tree re-balancing is a problem,
however, because a small change can effect a large
part of the tree. Adding an item to the head of a list
is also a small change. However, lists require linear
time to seek to an inner element to change it, and
change propagation also takes linear time.

As part of a recent IC project, one of my tasks was
to distill the algorithmic essentials from a complex
experimental code base. This code provided methods
for working with lists in an effort to make searching
more efficient. My simplification helped coalesce our
ideas into a single data structure and methods for
its manipulation. We dub this structure the “RAZ”,
which stands for Random Access Zipper.

A zipper is a functional data structure that repre-
sents a sequence of items and a cursor within it [2].
Its strength is that edits local to the cursor are per-
formed in O(1) time, including insertion, removal,
and movement of the cursor across a single item.
Movement to arbitrary points in the zipper, however,
requires a linear time search like an ordinary list.

∗ACM Student Member 1004593
†Work done as 1st year graduate, Spring ‘16

To overcome this limitation, I wrote algorithms
that build an “unfocused” tree out of the RAZ, with
the sequence data in leaves, and another to refocus
the tree into a “focused” RAZ with the cursor at
the target point. To facilitate the transformations,
the focused RAZ contains entire branches in unfo-
cused form. These are partially deconstructed, or
“trimmed”, on demand as edits are made. The fo-
cus and unfocus operations take O(log n) time, and
trimming is nearly constant time (logarithmic in the
size of the closest subtree to the cursor), but the un-
focused tree needs to be balanced.

The RAZ is balanced by including data in each tree
node representing its level in the unfocused RAZ. In-
spiration for the probabilistic levels was taken from
[3], who devised a balancing method based on the
data of the represented sequence. In the focused
RAZ, level meta data appears between each item of
the sequence and is handled behind the scenes by the
editing operations. The levels are assigned randomly
with a negative binomial distribution, that is, from a
distribution similar to picking the height of a random
node from a fully balanced tree. The levels define a
unique tree structure with no need for re-balancing.

The inclusion of meta data in the tree nodes works
well with Adapton, an incremental computation en-
gine I worked on previously [1]. Adapton uses named
locations when memoizing data structures. Instead of
storing a level in a tree node, we store a unique name
from which a level can be generated. These names
can then be used as keys to retrieve memoized re-
sults of operations over entire subtrees, or sequences.
Stats about the RAZ can be computed with mem-
oized functions instead of stored in tree nodes. For
example, the focus algorithm uses memoized element
count of a subtree to search for a particular location
in the RAZ.

There are three algorithms that exemplify the
RAZ. They are provided below with explanation:

1

let unfocus (l, r) =

let ltree = fold (fun a b ->

merge (tree a) b) l Nil in

let rtree = fold (fun a b ->

merge b (tree a)) r Nil in

merge ltree rtree

let rec merge t1 t2 =

match t1 , t2 with

| Nil , _ -> t2

| _, Nil -> t1

| Leaf(_), Leaf(_) ->

Bin(new_name(), t1 , t2)

| Leaf(_), Bin(n,l,r) ->

Bin(n, merge t1 l, r)

| Bin(n,l,r), Leaf(_) ->

Bin(n, l, merge r t2)

| Bin(n1,t1l ,t1r), Bin(n2 ,t2l ,t2r) ->

if level n1 > level n2

then Bin(n1 , t1l , merge t1r t2)

else Bin(n2 , merge t1 t2l , t2r)

Unfocus (along with merge) folds over the two sides
of the focused RAZ, builds trees from each item and
merges all of them together. Merge works by check-
ing the levels of both tree roots (leaves are consid-
ered lowest). The root with the highest level becomes
the combined root, and the other tree is recursively
merged into the branch at the appropriate side.

let rec focus_rec tree pos zip =

match tree with

| Nil -> zip

| Leaf(l) ->

if pos == 0

then insert l zip R

else insert l zip L

| Bin(n, l, r) ->

let lc = item_count_memo l in

if pos < lc

then focus_rec l pos

(insert_tree n zip r Right)

else focus_rec r (pos - lc)

(insert_tree n zip l Left)

Focus takes an unfocused RAZ, a location, and an
accumulator RAZ, and produces a focused RAZ. The
path through the unfocused RAZ to the target loca-
tion divides it into two, and items are inserted into
the focused RAZ depending on which side of the path

they are on. Subtrees that are not split are inserted
into the focused RAZ unmodified.

let trim dir tl =

let rec loop tlist =

match tlist with

| Nil | Cons(_,_) | Name(_,_) -> tlist

| Tree(tree , rest) ->

match tree with

| Nil -> rest

| Leaf(l) -> Cons(l,rest)

| Bin(n,l,r) ->

match dir with

| Left ->

loop (Tree(l,Name(n,Tree(r,rest))))

| Right ->

loop (Tree(r,Name(n,Tree(l,rest))))

in loop tl

Trim is used when the RAZ cursor attempts to edit
an included subtree. It breaks down the subtree as if
it were focusing on the leaf closest to the cursor. The
subtrees resulting from the trim are inserted back into
the RAZ in order. The newly exposed item can then
be edited in place.

Functions that edit the RAZ are not shown, but
can be implemented as expected for a zipper, with
one difference: along with regular functionality, in-
sert adds a name, delete removes a name, and move
moves through a name.

The RAZ and associated algorithms provide a way
to edit a functional data sequence in logarithmic time
regardless of the location or type of edits. Moreover,
a RAZ can temporarily perform as a common zipper,
with constant time edits, though the next unfocus
call will take longer. A RAZ works well with in-
cremental computation techniques, sharing necessary
meta data, and providing a tree structure for ease of
recomputation. It is a great structure for arbitrary
incremental changes to a sequence of data.

References
[1] Matthew A. Hammer, Joshua Dunfield, Kyle Headley,

Nicholas Labich, Jeffrey S. Foster, Michael Hicks, and
David Van Horn. Incremental computation with names.
In OOPSLA, 2015.

[2] Gérard Huet. The zipper. Journal of Functional Program-
ming, 1997.

[3] William Pugh and Tim Teitelbaum. Incremental compu-
tation via function caching. In POPL, 1989.

2

