
IODyn: A High-Level Language for 
Incremental Computation

By Kyle Headley 
University of Colorado Boulder 

kyleheadley.github.io1



What is Incremental Computation?

2



What is Incremental Computation?

Initial Input

I1

fn P
Original function

3



What is Incremental Computation?

Initial Input

Initial Output

I1

O1

fn P
Original function

4



What is Incremental Computation?

Initial Input Changed Input

Initial Output

Input change

I1 I2ΔI

O1

fn P
Original function

5



What is Incremental Computation?

Initial Input Changed Input

Initial Output

Input change

I1 I2ΔI

O1 O2

Changed Output

fn P fn P
Original functionOriginal function

6



What is Incremental Computation?

Initial Input Changed Input

Initial Output

Input change

I1 I2ΔI

O1 O2

Changed Output

fn P fn P
Original functionOriginal function

Can we obtain the 
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How do we use Incremental Computation?

General-purpose incremental 
computation engines are 

accessed through libraries

Programmers annotate 
variables and functions based 

on their knowledge of the 
program and its incremental 

behavior
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How do we use Incremental Computation?

General-purpose incremental 
computation engines are 

accessed through libraries

Programmers annotate 
variables and functions based 

on their knowledge of the 
program and its incremental 

behavior

But library use may not be straightforward and improper 
caching can lead to slowdowns or incorrect results
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How do we improve Incremental Computation?
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Incremental 
Collections 
Libraries

Type system for 
use of library 

features

Our lab is working on:
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Static guarantees of proper use 
of incremental features

Caching strategies that work 
efficiently for common 

computation tasks

How do we improve Incremental Computation?

Incremental 
Collections 
Libraries

Type system for 
use of library 

features

Conflicts between multiple 
applied incremental functions 
may still interfere with cache 

behavior

Writing the code is still difficult, 
and it provides no guarantees 

of performance

Our lab is working on:

But these are specific solutions, with faults:
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IODyn

github.com/cuplv/iodyn-lang.rust

Implicitly Incremental Language
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Work in progress:

Based on the lambda-calculus

Collections primitives

Translated to Typed Adapton

http://github.com/cuplv/iodyn-lang.rust
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Parsing with Rust Macros
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Parsing with Rust Macros

macro_rules! macro_name { 
{ pattern } => { replacement }; 
… 

} 

macro_name![ pattern ] 
// replacement

Defined by a set of rewriting rules
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Parsing with Rust Macros

macro_rules! macro_name { 
{ literal1 literal2 } => { literal3 }; 
{ literal1 $variable:tt } => { $variable literal1 }; 
{ literal2 $($repeats:tt),+ } => $(litteral2 $repeats);+ } 

} 

macro_name![ literal1 something ] 
// something literal1 
macro_name![literal2 r, s, t] 
// literal2 r; literal2 s; literal2 t

Defined by a set of rewriting rules
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macro_rules! make_exp { 
// lam r.e (lambda) 
{lam $var:ident . $($body:tt)+ } => 
{{Exp::Lam( 

stringify![$var].to_string(), 
Rc::new(make_exp![$($body)+]) 

) 
… 

}}; 
}

{fix qh. lam pts. lam line. lam hull. 
let complete = { SeqIsEmpty(pts) } 
if (complete) then { ret hull } else { 
… 

}} : Seq((nat x nat)) -> 
    ((nat x nat) x (nat x nat)) -> 
    Seq((nat x nat)) -> 
    F Seq((nat x nat)) 

Parsing with Rust Macros

Sample rule Sample code
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Parsing with Rust Macros

A -> B -> C -> D

Not directly possible, instead, 
use a fold, checking each token
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Parsing with Rust Macros

A -> B -> C -> D

Not directly possible, instead, 
use a fold, checking each token

(A)(B)(C)(D)
⇓Fold, find `->`
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Translation soundness
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if Γ⊢e:C ⤳x Γ⊢e:C▹ε 
and Γ⊢σ:Γ ⤳ Γ⊢σ:Γ 
and σ;e ⇓ σ’;t’ 
and {n is a name} 
then exist {new variables} 
such that 
Γ’⊢t’:C ⤳y Γ’⊢t’:C▹⟪∅,∅⟫ 
and Γ’⊢σ’:Γ’ ⤳ Γ’⊢σ’:Γ’ 
and σ;[n/x]e ⇓ σ’;t’

Translation soundness
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Summary

IODyn is a new 
incremental language that 
abstracts away much of 

the complexity of 
incremental code

www.github.com/cuplv/iodyn-lang.rust kyleheadley.github.io
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IODyn combines the 
optimizations and safety of 
multiple previous projects

I’ve been working on 
defining and type-

checking the IODyn 
source language

Next steps include 
implementing the 

translation and evaluating 
the results against the 

source spec

http://www.github.com/cuplv/iodyn-lang.rust
http://kyleheadley.github.io

