|ODyn: A High-Level Language for
Incremental Computation

By Kyle Headley
University of Colorado Boulder
1 kyleheadley.github.io

What is Incremental Computation®

What is Incremental Computation?

Initial Input

|1

Original function

fn P

What is Incremental Computation?

Initial Input

What is Incremental Computation?

Initial Input Input change Changed Input

What is Incremental Computation?

Initial Input Input change Changed Input

Changed Output @

OF

What is Incremental Computation?

Initial Input Input change Changed Input

Can we obtain the
result faster the
second time”?

Changed Output @

OF

What is Incremental Computation?

Initial Input Input change Changed Input

What is Incremental Computation?

Initial Input Input change Changed Input

|

|1

Original fulliction Derived change function

Initial Output

OF

Changed Output

OF

Output change

AO

What is Incremental Computation?

Initial Input Input change Changed Input

JAY

1 P

Memo/ :
Dependency function !

fnm

Original fUllction

e

Initial Output

OF

Changed Output

OF

10

What is Incremental Computation?

Initial Input Input change Changed Input

JAY

|

Memo/

Dependerg@y function

nfmP

Initial Output

OF

Memo/
Dependency function

fn m

Cached Data

Data Flow Information |

Changed Output

OF

11

How do we use Incremental Computation”

Programmers annotate

General-purpose incremental variables and functions based
computation engines are on their knowledge of the
accessed through libraries program and its incremental

behavior

12

How do we use Incremental Computation”

Programmers annotate

General-purpose incremental variables and functions based
computation engines are on their knowledge of the
accessed through libraries program and its incremental

behavior

But library use may not be straightforward and improper
caching can lead to slowdowns or incorrect results

13

How do we improve Incremental Computation”

Speedups Correctness

14

How do we improve Incremental Computation”

Speedups

Caching strategies that work
efficiently for common
computation tasks

15

Correctness

Static guarantees of proper use
of incremental features

How do we improve Incremental Computation”

Speedups Correctness

Caching strategies that work
efficiently for common
computation tasks

Static guarantees of proper use
of incremental features

Our lab is working on:

Incremental Type system for
Collections use of library
Libraries features

16

How do we improve Incremental Computation”

Speedups Correctness

Caching strategies that work
efficiently for common
computation tasks

Static guarantees of proper use
of incremental features

Our lab is working on:

Incremental Type system for
Collections use of library
Libraries features

But these are specific solutions, with faults:

Conflicts between multiple
applied incremental functions
may still interfere with cache

behavior

Writing the code is still difficult,
and it provides no guarantees
of performance

17

|ODyn

Implicitly Incremental Language

Work In progress:
github.com/cuplv/iodyn-lang.rust

Based on the lambda-calculus

Collections primitives

Translated to Typed Adapton

18

http://github.com/cuplv/iodyn-lang.rust

What is 10Dyn?

Source and Specification Language Target Language

Collections Library -

Planned Meta Theory
In Progress Formal Definition
Complete 19

Implementation

What is 10Dyn?

Collections Library

Planned Meta Theory
In Progress Formal Definition
Complete 20

Implementation

What is IODyn?

Planned Meta Theory
In Progress Formal Definition
Complete 21

Implementation

What is I0Dyn"”
In Submission

|ODyn - | ‘.

Language 4. ook -

Parser

Source Target

AST Projection Translation Projection based

Soundness

Collections

Interface

Collections Library
o Maps Graphs

IC Workshop’17 OOPSLA’15, Reimplemented

Ev

Tests
Collections Collections
- . Tests Performance
R Tests Incremental
S Strategies
Tests

Specification M Incremental
Results Results

Planned Meta Theory
In Progress Formal Definition
Complete 22

Implementation

What is IODyn? My Current Focus

AST

Typed
Adapton

SMT- s
based Checking
refinement
checking
Collections Library
Adapton fet
: Ev tion
Incremental Engine
4 Sequences Maps Graphs
(Giraz)
Integration
Tests
Collections Collections
Tests Performance
wrappers Tests Incremental
Core Strategies
Tests
Specification M Incremental
Results Results
Planned Meta Theory
In Progress Formal Definition
Complete 23

Implementation

What is |ODyn? Samples

AST

= % Typea
Language Type-Checking AdaptOn
|:)Sourc arget SMT- .
AST rojecti ojection hased ype-
refinement Checking
Collections checking
Interface
Collections Library
Adapton el
: Ev tion
Incremental Engine
8 Sequences Maps Graphs
(Giraz)
Integration
Tests
Collections Collections
Tests Performance
wrappers Tests Incremental
Core Strategigs
Tests
Specification Incremental
Results Results
Planned Meta Theory
In Progress Formal Definition
Complete 24

Implementation

Parsing with Rust Macros

25

Parsing with Rust Macros

Defined by a set of rewriting rules

macro_rules! macro_name {
{ pattern } == { replacement };

)

macro_name! [pattern]
// replacement

20

Parsing with Rust Macros

Defined by a set of rewriting rules

macro_rules! macro_name {

{ literall literal2 } => { literal3 };

{ literall ¢$variable:tt } => { $variable literall };

{ literal2 $($repeats:tt),+ } => $(litteral2 $repeats);+ }
s

macro_name![literall something]

// something literall

macro_name! [literal2 r, s, t]

// literal2 r; literal2 s; literal2 t

27

Parsing with Rust Macros

Sample rule Sample code
macro_rules! make_exp { {fix :
gh. lam pts. lam line. lam hull.
g{ lag r.?.élabda($b dv:tt)+ T => let complete = { SeqIsEmpty(pts) }
{{Ezp:gﬁgﬁ% ent . ody: " | if (complete) then { ret hull } else {
stringify![$var].to_string(), L.
Rc::new(make_exp! [$($body)+]) }} '(%ﬁgé(gaﬁaé)natzgat X nat)) —>
) Seq((nat x nat)) -
11 F Seq((nat x nat))

}

28

Parsing with Rust Macros

A—>B—-—>C->0D

Not directly possible, instead,
use a fold, checking each token

29

Parsing with Rust Macros

A—>B—-—>C->0D
,U, Fold, find —>"
(A)(B) (C)(D)

Not directly possible, instead,
use a fold, checking each token

30

Translation soundness

31

Translation soundness

if TFe:C ~yx [rFe:Cre
and N-o:I' ~ [~o:l
and o:e 1 o':t"

and {n is a name}

then exist {new variables}
such that

["Ht":C ~y 'L 1 Cr(2,2)
and MN~o':lr'" ~ "o’ :["
and o; [n/x]le v o’;t’

32

Translation soundness

ODyn # Typed
Language Adapton
if Te:C ~y [+e:Cse
and MN-o:I" ~ [+o:l
and o:e 1 o':t’
and {n is a name}

then exist {new variables}
such that

["Ht":C ~y 'L 1 Cr(2,2)
and N+o':T" ~ [C'+o’:[’
and o; [n/x]le v g’;t’ |

33

Incremental
Results

Specification
Results

Summary

|[ODyn is a new

incremental language that ODyn combines the
abstracts away much of optimizations and safety of
the complexity of multiple previous projects

iIncremental code

Next steps include
implementing the
translation and evaluating
the results against the
source spec

I've been working on
defining and type-
checking the 10Dyn
source language

www.github.com/cuplv/iodyn-lang.rust kyleheadley.github.io

34

http://www.github.com/cuplv/iodyn-lang.rust
http://kyleheadley.github.io

