
IODyn: A High-Level Language for
Incremental Computation

By Kyle Headley
University of Colorado Boulder

kyleheadley.github.io1

What is Incremental Computation?

2

What is Incremental Computation?

Initial Input

I1

fn P
Original function

3

What is Incremental Computation?

Initial Input

Initial Output

I1

O1

fn P
Original function

4

What is Incremental Computation?

Initial Input Changed Input

Initial Output

Input change

I1 I2ΔI

O1

fn P
Original function

5

What is Incremental Computation?

Initial Input Changed Input

Initial Output

Input change

I1 I2ΔI

O1 O2

Changed Output

fn P fn P
Original functionOriginal function

6

What is Incremental Computation?

Initial Input Changed Input

Initial Output

Input change

I1 I2ΔI

O1 O2

Changed Output

fn P fn P
Original functionOriginal function

Can we obtain the
result faster the
second time?

7

What is Incremental Computation?

Initial Input Changed Input

Initial Output

Input change

I1 I2ΔI

O1

fn ΔPfn P
Derived change functionOriginal function

8

What is Incremental Computation?

Initial Input Changed Input

Initial Output

Input change

I1 I2ΔI

O1 O2ΔO
Output change

Changed Output

fn ΔPfn P
Derived change functionOriginal function

9

What is Incremental Computation?

Initial Input Changed Input

Initial Output

Input change

fn mP

I1 I2ΔI

O1 O2

Changed Output

fn P

Memo/
Dependency functionOriginal function

10

What is Incremental Computation?

Initial Input Changed Input

Initial Output

Input change

fn mP

I1 I2ΔI

O1 O2

Changed Output

fn mP

Memo/
Dependency function

Cached Data

Data Flow Information

11

Memo/
Dependency function

How do we use Incremental Computation?

General-purpose incremental
computation engines are

accessed through libraries

Programmers annotate
variables and functions based

on their knowledge of the
program and its incremental

behavior

12

How do we use Incremental Computation?

General-purpose incremental
computation engines are

accessed through libraries

Programmers annotate
variables and functions based

on their knowledge of the
program and its incremental

behavior

But library use may not be straightforward and improper
caching can lead to slowdowns or incorrect results

13

How do we improve Incremental Computation?

14

Speedups Correctness

Static guarantees of proper use
of incremental features

Caching strategies that work
efficiently for common

computation tasks

How do we improve Incremental Computation?

15

Speedups Correctness

Static guarantees of proper use
of incremental features

Caching strategies that work
efficiently for common

computation tasks

How do we improve Incremental Computation?

Incremental
Collections
Libraries

Type system for
use of library

features

Our lab is working on:

16

Speedups Correctness

Static guarantees of proper use
of incremental features

Caching strategies that work
efficiently for common

computation tasks

How do we improve Incremental Computation?

Incremental
Collections
Libraries

Type system for
use of library

features

Conflicts between multiple
applied incremental functions
may still interfere with cache

behavior

Writing the code is still difficult,
and it provides no guarantees

of performance

Our lab is working on:

But these are specific solutions, with faults:

17

Speedups Correctness

IODyn

github.com/cuplv/iodyn-lang.rust

Implicitly Incremental Language

18

Work in progress:

Based on the lambda-calculus

Collections primitives

Translated to Typed Adapton

http://github.com/cuplv/iodyn-lang.rust

19

Planned

Complete
In Progress

Meta Theory

Implementation
Formal Definition

Collections Library

Typed
Adapton

IODyn
Language

Adapton
Incremental Engine

What is IODyn?

Source and Specification Language Target Language

20

Planned

Complete
In Progress

Meta Theory

Implementation
Formal Definition

Collections Library

Typed
Adapton

IODyn
Language

Specification
Results

Spec
Evaluation

Incremental
ResultsVerification

Incr.
Evaluation

Translation
Judgements

Adapton
Incremental Engine

What is IODyn?

21

Planned

Complete
In Progress

Meta Theory

Implementation
Formal Definition

Collections Library

Sequences
(Giraz)

Maps Graphs

Typed
Adapton

IODyn
Language

Translation
Soundness

Parser

AST

Collections
Interface

Source
Projection

Target
ProjectionAST

Specification
Results

Spec
Evaluation

Collections
wrappers

Incremental
ResultsVerification

Incr.
Evaluation

Type-Checking

Type-
Checking

TranslationTranslation
Judgements

SMT-
based

refinement
checking

Collections
Tests

Incremental
StrategiesCore

Tests

Adapton
Incremental Engine

Integration
Tests

Performance
Tests

What is IODyn?

22

Planned

Complete
In Progress

Meta Theory

Implementation
Formal Definition

Collections Library

Sequences
(Giraz)

Maps Graphs

Typed
Adapton

IODyn
Language

Translation
Soundness

Parser

AST

Collections
Interface

Source
Projection

Target
ProjectionAST

Specification
Results

Spec
Evaluation

Collections
wrappers

Incremental
ResultsVerification

Incr.
Evaluation

Type-Checking

Type-
Checking

TranslationTranslation
Judgements

SMT-
based

refinement
checking

Collections
Tests

Incremental
StrategiesCore

Tests

Adapton
Incremental Engine

Integration
Tests

Performance
Tests

What is IODyn?

OOPSLA’15, ReimplementedIC Workshop’17

In Submission

23

Planned

Complete
In Progress

Meta Theory

Implementation
Formal Definition

Collections Library

Sequences
(Giraz)

Maps Graphs

Typed
Adapton

IODyn
Language

Translation
Soundness

Parser

AST

Collections
Interface

Source
Projection

Target
ProjectionAST

Specification
Results

Spec
Evaluation

Collections
wrappers

Incremental
ResultsVerification

Incr.
Evaluation

Type-Checking

Type-
Checking

TranslationTranslation
Judgements

SMT-
based

refinement
checking

Collections
Tests

Incremental
StrategiesCore

Tests

Adapton
Incremental Engine

Integration
Tests

Performance
Tests

What is IODyn? My Current Focus

24

Planned

Complete
In Progress

Meta Theory

Implementation
Formal Definition

Collections Library

Sequences
(Giraz)

Maps Graphs

Typed
Adapton

IODyn
Language

Translation
Soundness

Parser

AST

Collections
Interface

Source
Projection

Target
ProjectionAST

Specification
Results

Spec
Evaluation

Collections
wrappers

Incremental
ResultsVerification

Incr.
Evaluation

Type-Checking

Type-
Checking

TranslationTranslation
Judgements

SMT-
based

refinement
checking

Collections
Tests

Incremental
StrategiesCore

Tests

Adapton
Incremental Engine

Integration
Tests

Performance
Tests

What is IODyn? Samples

25

Parsing with Rust Macros

26

Parsing with Rust Macros

macro_rules! macro_name {
{ pattern } => { replacement };
…

}

macro_name![pattern]
// replacement

Defined by a set of rewriting rules

27

Parsing with Rust Macros

macro_rules! macro_name {
{ literal1 literal2 } => { literal3 };
{ literal1 $variable:tt } => { $variable literal1 };
{ literal2 $($repeats:tt),+ } => $(litteral2 $repeats);+ }

}

macro_name![literal1 something]
// something literal1
macro_name![literal2 r, s, t]
// literal2 r; literal2 s; literal2 t

Defined by a set of rewriting rules

28

macro_rules! make_exp {
// lam r.e (lambda)
{lam $var:ident . $($body:tt)+ } =>
{{Exp::Lam(

stringify![$var].to_string(),
Rc::new(make_exp![$($body)+])

)
…

}};
}

{fix qh. lam pts. lam line. lam hull.
let complete = { SeqIsEmpty(pts) }
if (complete) then { ret hull } else {
…

}} : Seq((nat x nat)) ->
 ((nat x nat) x (nat x nat)) ->
 Seq((nat x nat)) ->
 F Seq((nat x nat))

Parsing with Rust Macros

Sample rule Sample code

29

Parsing with Rust Macros

A -> B -> C -> D

Not directly possible, instead,
use a fold, checking each token

30

Parsing with Rust Macros

A -> B -> C -> D

Not directly possible, instead,
use a fold, checking each token

(A)(B)(C)(D)
⇓Fold, find `->`

31

Translation soundness

32

if Γ⊢e:C ⤳x Γ⊢e:C▹ε
and Γ⊢σ:Γ ⤳ Γ⊢σ:Γ
and σ;e ⇓ σ’;t’
and {n is a name}
then exist {new variables}
such that
Γ’⊢t’:C ⤳y Γ’⊢t’:C▹⟪∅,∅⟫
and Γ’⊢σ’:Γ’ ⤳ Γ’⊢σ’:Γ’
and σ;[n/x]e ⇓ σ’;t’

Translation soundness

33

if Γ⊢e:C ⤳x Γ⊢e:C▹ε
and Γ⊢σ:Γ ⤳ Γ⊢σ:Γ
and σ;e ⇓ σ’;t’
and {n is a name}
then exist {new variables}
such that
Γ’⊢t’:C ⤳y Γ’⊢t’:C▹⟪∅,∅⟫
and Γ’⊢σ’:Γ’ ⤳ Γ’⊢σ’:Γ’
and σ;[n/x]e ⇓ σ’;t’

Translation soundness
Typed

Adapton
IODyn

Language

Specification
Results

Incremental
Results

Summary

IODyn is a new
incremental language that
abstracts away much of

the complexity of
incremental code

www.github.com/cuplv/iodyn-lang.rust kyleheadley.github.io
34

IODyn combines the
optimizations and safety of
multiple previous projects

I’ve been working on
defining and type-

checking the IODyn
source language

Next steps include
implementing the

translation and evaluating
the results against the

source spec

http://www.github.com/cuplv/iodyn-lang.rust
http://kyleheadley.github.io

