
Giraz

Explicit memo
table

mtable = new Memo;
fn max(l: List) -> Num {
 fn memo(l) -> Num {
 let ma = match mtable.get(a){
 Some(a) => a,
 None => {
 let ma = max(l);
 mtable.put(a,ma);
 ma
 }
 }
 let (a,b) = match split(l) {
 None => l.pop(),
 Some((a,b)) => {
 bin_max(memo(a),memo(b))
 }
 }
}

fn max(ml: MemoList) -> Num {
 let l = read(ml);
 let (a,b) = match split(l) {
 None => l.pop(),
 Some((a,b)) => {
 bin_max(
 memo(max(write(a))),
 memo(max(write(b)))
)
 }
 }
}

fn max(l: Giraz) -> Num {
 namespace("calc_max",||{
 l.fold_lr(|a,b|{
 bin_max(a,b)
 })
 })
}

collections

library

memo table
Incremental Code

Table handling

Explicit
subsequence

Explicit
subsequence

read/write data for
dependency

tracking

automatic change
propagation

action labels
basic code

P
R
O
G
R
E
S
S

automatic change
propagation

calling these functions
will introduce a
dependency

graph:

fold_up()
fold_lr()
map()

A collection for incremental sequences

Memo group Memo group

memo read memo read

Overhead Reduction

Memo group

native
read

native
read

Many incremental
computation libraries use
one memoized thunk per

user function. This requires
a lot of overhead.

Grouping up functions and
running them together when the

thunk requires recompilation
can save a lot of time looking

up parameters.

15 44 2

4

4

5 9

9

9

Mutate

Transitively
“dirty” graph

Dependency Graphs

Dependency graphs are important for general purpose incremental
computation. Nodes in the graph store code. When changing an

input node, all dependents are marked as needing re-computation.
In this way, dependency graphs can abstract some of the

incremental code management away from the user.

This thunk
computes

max

9 3

by Kyle Headley
More info at kyleheadley.github.io

Changes 30

0
2.8ms

Update: 0.05ms6ms

Crossover:~1.2

C
um

ul
at

iv
e

Ti
m

e Incremental Max

30Changes

0
Update: 14ms

Crossover:~5.5

C
um

ul
at

iv
e

Ti
m

e

57ms
213ms

Incremental Quickhull

Introducing:

Systems language
Incremental computation requires a

lot of memory management.
References and garbage collectors
in some languages can get in the
way. The best choice is a systems

language like rust that does not
have a garbage collector.

“Rust is a systems programming language that runs blazingly
fast, prevents segfaults, and guarantees thread safety.”

Prior incremental code, like the memo-
table and library versions to the left,
required users to think directly about
the incremental strategies used.
This becomes limiting when
trying to divide up work into
subproblems. The user
m u s t c o n s i d e r
rearranging code
t h a t s p a n s
m u l t i p l e
re c u r s i v e
calls.

Incremental computation works best
with large data sets or long-running
computations. Incremental libraries
are well-suited for long-running
computations, but not for
simple computations on
large datasets. The
collections strategy
makes up for this
deficiency.

Cache Coherency

15 4 34 2
Linked List

Rea
d

Rea
d

Rea
d

Rea
d

Rea
d

Rea
d

Res
ult

Com
pute

Com
pute

Com
pute

Com
pute

Com
pute

Com
pute

15 4 34 2

Read Result
Compute

Array

Arrays require far fewer
memory accesses than
linked lists. Using arrays

prevents pauses in
computation. In incremental
computation, reads have to
check whether the data has

changed or if it’s in the
memo table, requiring more

time.

T h e
G i r a z i s

based on the
R A Z d a t a

structure. It has an
ed i t mode and a

compute mode. When in
edit mode, the user can

change data as if they had a
cursor between two linked lists. In

compute mode, the user calls one of
the provided methods with some non-

incremental code they wrote. All the
incremental work is done by the Giraz.

T h e
G i r a z
stores data
i n a r r a y s
internally, which
may or may not be
exposed to the user,
d e p e n d i n g o n t h e
incremental method call. The
array boundaries are defined
when the data is added to the
collection. The user calls “archive”
functions instead of inserting a data
element. These calls insert markers used
internally to structure the whole collection.

Incremental id

Array of elements
in the leaves

Efficient tree
structure

Dependency link

Memoized function

All dependencies link
back to the main data

Garbage collectors are usually great for
languages that use references and linked

data goes out of scope during execution.
With incremental computation, large

dependency graphs are stored and
their scope doesn’t necessarily

match the program structure.
The garbage collector ends

u p t r a v e r s i n g t h e s e
graphs, spending a lot

of time searching for
stale data that

doesn’t exist.

The Adapton Incremental Computation Engine
uses “names” as memo table keys. They allow

more complex usage of memorization
primitives. Making good use of names in

complex situations is a difficult
research problem, but we can

encode some working strategies
i n t o o u r c o l l e c t i o n s

abst ract ions. As more
research comes out, we

can improve the library
w i t h o u t a s k i n g

users to change
their code.

Native code
Incremental codeNative code

Incremental code

To test the
Giraz we

compare with
native code.

We run a
similar

computation
over the Giraz
and a single

array. We insert
a new item in a

random
location and
re-run the

computation.
The Giraz

completes the
re-computation

much faster
than the array!

max 58x Speedup
quickhull 4x Speedup

calc 24x Speedup

to_string 450x Speedup

reverse 22x Speedup

find the largest number
in the sequence

find the subset of points
that surround the others

parse numbers and symbols
and perform the calculation

change all the
numbers to text

change the order of
the elements

There were 106 elements and most tests updated in under 1ms.

Compute Structure Data structure

Speed and Simplicity for Incremental Sequence Computation
How do we make Incremental Computation easier to use? How will it compete with the speed of native code?

