Speed and Simplicity
for Incremental Sequence Computation

By Kyle Headley
University of Colorado Boulder
1 kyleheadley.github.io

What is Incremental Computation”

420149 65678336

What is Incremental Computation”

max(425149 578336)=9

What is Incremental Computation”

max(425149 578336)=9

Change Data

420143 578336

What is Incremental Computation”

max(425149 578336)=9

Change Data| Update Result?

max(425143 578336)=8

What is Incremental Computation”

max(425149 578336)=9

Change Data Update Result? |
max(4 25143 578336)=8

Not incremental: requires additional full scan of data

A computation Is incremental if
repeating it with a changed input Is
faster than re-computation

Using Memo Tables

420149 5678336

Using Memo Tables

N

420149 5678336

Using Memo Tables

max(9 8)=09 Add results
to table

420149 5678336

10

Using Memo Tables

N

425143578336

Change value

11

Using Memo Tables

Update persistent tree

420143 578336

12

Using Memo Tables

max(5 8)=8 =,

Re-compute value

420143 578336

13

Using Memo Tables

max(5 8)=38

Memo match!

max(4 251430578336

14

Using Memo Tables

But there’'s a problem with memo tables

15

Using Memo Tables

Memo
T1 9
T2 5

4 25143

Editing a persistant data structure

16

Using Memo Tables

Memo
T1 9
T2 5
T3 8

48305143

Editing a persistant data structure

17

Using Memo Tables

Memo
1 9
T2 5
T3 8
T4 9

4851409

Editing a persistant data structure

18

Using Memo Tables

Memo
11 9
12 5
13 3
T4 9
4851409

New entry for
each change

19

Using Memo Tables

Lets try mutating values

20

Using Memo Tables

Memo

T1 5

/

) =5 Mutate table

B/Mutate value

max(

4 25143

21

Using Memo Tables

Sut how do we know that
the computation result at
the root changed? T 5

Memo

‘(Mutate value

4 25143

22

Language-based Incremental Computation

Reason about the non-incremental computation

Make calls to library functions for data access

Internally, the library makes use of:
Cached values

Dependency graphs

23

Dependency Graphs

2 Input Cell

Dependency Graphs

%8 Input Cell

@ Computation
- Dependency

max(val4,val5)

Dependency Graphs

48 nput Cell

@ Computation
- Dependency

With one memo
table entry per thunk

20

Dependency Graphs

48 nput Cell

@ Computation
- Dependency

p Mutate Value

27

Dependency Graphs

48 nput Cell

@ Computation
- Dependency

—» Needs Re-
@ computation

Transitively
mark graph as

28

Dependency Graphs

48 nput Cell

@ Computation
- Dependency

—» Needs Re-
@ computation

Request
_JLComputation

29

Dependency Graphs

48 nput Cell

@ Computation
- Dependency

—» Needs Re-
@ computation

I Transitive Re-

9 computation

Graph is
_ "cleaned”

30

Dependency Graphs

2 Input Cell

@ Computation
- Dependency

—» Needs Re-
@ computation

I Transitive Re-

e computation

Memo match!

Research challenge

How do we advance the use of incremental
computation, further simplitying code
creation and providing speedups over

realistic code”

32

How do we advance the use of incremental
computation, further simplifying code
creation and providing speedups over

Speed Problem

realistic code”

www.rust-lang.org

Rust Is a systems p
that

dlncC

U

oL

ns blazing
arantees t

y

Documentation Install

—~

fas
nreac

rogramming language

, prevents segfaults,

safety.

Community

Cont

IIIIHHH

http://www.rust-lang.org

Speed Problem

Incremental performance improved

Non-Incremental performance improved a lot more

34

Speed Problem

Computers are better at adding and
subtracting numbers than walking
through memory

35

Speed Problem

Computers are better at adding and
subtracting numbers than walking
through memory

Incremental computation libraries
manage a lot of memory

36

Simplicity Problem

How do we advance the use of incremental
computation, further simplitying code
creation and providing speedups over

realistic code”

37

Simplicity Problem

Memo tables reduce computations

38

Simplicity Problem

Memo tables reduce computations

Dependency graphs hide the memo tables

39

Simplicity Problem

Memo tables reduce computations

Dependency graphs hide the memo tables

We want a way to generate graphs of similar computations

40

Simplicity Problem

Ad-Hoc tree.
and tables_

User writes
frees anc
memo-table
functions and
edits by
reconstructing
the tree

Simplicity Problem

Ad-Hoc tree

and tables, Language-based
‘abstraction

User writes
trees anc
memo-table Jser writes
functions and functions using
edits by an inc lib, and
reconstructing edits by
the tree

changing single
values

42

Simplicity Problem

Data collections

abstraction seq.fold_up(max) = 5

User writes non-
Incrementa
functions for
higher-order
combinators and
edits through
Intuitive
collections
interface

lodyn

Incremental Collections Library
Based on Adapton

github.com/cuplv/iodyn.rust rust crate: iodyn

|IRaz - Incremental sequences

(Giraz”?, Sigraz?)

In progress: Tries, Graphs

44

http://github.com/cuplv/iodyn.rust

Giraz

Incremental Sequence data structure
Based on Adapton

Based on RAZ data structure
Includes incremental functions

Insert
fold_up -
Delete tree fold, compute at leaf and
binary nodes
Move cursor fold_Ir -

list fold, compute at each element

map -
maintain structure and transform each
element

45

What is a Giraz”

Sequence: AEE EEEE BE aEEEE

46

What is a Giraz”

Sequence:

47

What is a Giraz?

Tree-based implementation
for efficient incremental
computation,

Sequence:

48

What is a Giraz?

Tree-based implementation
for efficient incremental
computation,

~.Incremental meta-data
at tree nodes

Sequence: HiEE EEgE BB EEEAES

49

What is a Giraz?

Higher-order collections combinators

fold_up()
fold_Ir()
map()

Sequence:

50

What is a Giraz?

Higher-order collections combinators

fold_up()
fold_Ir()
map()

Creates tree of
Incremental
thunks

EEE EBEEEE B E BEEEE<¢-----------foo- oo

51

What is a Giraz?

Allows user control over subproblem size

HEE EEEE BE EEBEBES®

52

What is a Giraz?

Allows user control over subproblem size

tations

Group the data

53

Overhead of incremental computation

Computers are better at adding and
subtracting numbers than walking
through memory

With optimized code, it's faster to re-compute subproblems
than to manage them through our dependency graphs

o4

Overhead of incremental computation

Ad-hoc: many memo-entries per change

Overhead of incremental computation

Ad-hoc: many memo-entries per change

Dependency graphs:
memo-entry per computation

56

Overhead of incremental computation

Ad-hoc: many memo-entries per change

Dependency graphs:
memo-entry per computation

Need to reduce further

57

Reducing the overhead of incremental computation

One memorized computation is
performed over an array of data

58

Reducing the overhead of incremental computation
One memorized computation is
performed over an array of data
Improve cache coherence
Reduce incremental overhead

Requires management

BEREEEE

59

Reducing the overhead of incremental computation
One memorized computation is
performed over an array of data
Improve cache coherence
Reduce incremental overhead

Requires management

We can still do more!

BEREEEE

60

Reducing the overhead of incremental computation

61

Reducing the overhead of incremental computation

Calculate max
of 6 number

62

Reducing the overhead of incremental computation

Calculate max
of 2 numbers

Calculate max
of 6 number

63

Reducing the overhead of incremental computation

One memorized thunk tracks
multiple user function calls

Improve cache coherence Reduce incremental overhead

Requires management

_max(

T max(al),
Works best with : max (a2)

large data sets
/ \ a2

Experimental Evaluation

65

Cumulative Time

Experimental Evaluation

Crossover plot

Changes

66

Cumulative Time

Experimental Evaluation

Crossover plot

*

T

Initial computation

Incremental —

Non Incrementg| — —

Changes

67

Cumulative Time

Experimental Evaluation

Crossover plot

v Overhead

T

Incremental —

Non Incrementg| — —

Changes

68

Cumulative Time

Experimental Evaluation

Crossover plot

> o

—%

*

Incremental —

Non Incrementg| — —

Make a change
and recompute

@)

Changes

69

Cumulative Time

Experimental Evaluation

Incremental a—

CI’OSSOVGI’ plOt Non Incremental ==

Incremental
x Update Time

*:I .
Full Re-computation
)1(Time

0 1
Changes

70

Cumulative Time

Experimental Evaluation

Incremental a—

CI’OSSOVGI’ plOt Non Incremental ==

> o

* Make a change
* and recompute

*
*

o —%

1 2
Changes

71

Cumulative Time

Experimental Evaluation

Crossover plot

2.8

*

Incremental —

Non Incrementg| — —

e

2 3
Changes

/2

Cumulative Time

Experimental Evaluation

Incremental —

CI’OSSOVGI’ plOt Non Incremental ==

*—k

\

Crossover: ~2.5

0 1 % 3 4
Changes

/3

Experimental Evaluation
Compute max of a collection

Non-Incremental

inputvec.iter().max()

Incremental

inputgiraz.fold_up(Ax.match x {
Leaf(vec) => vec.iter().max(),
Bin(ml,m2) => max(ml,m2)

})

74

Cumulative Time

Experimental Evaluation

Max of 1M elements,
arrays of 1 element

2.8ms
0

Incremental —

Non Incrementg| — —

Update: 0.2ms

Changes

30

Insert an element

79

Experimental Evaluation

Incremental —

Max of 1M elements,
arrays of 1 element

Non Incrementg| — —

D Update: 0.2ms
£ 4000ms
— 3
O
=
©
E Crossover:
S 20007
2.8MS
0 30

Changes
Insert an element

/6

Experimental Evaluation

Incremental I

Max of 1M elements,
arrays of 1000 elements

Non Incrementg| — —

)

S

I_

2

= Crossover:~1.2

S

S

O 6mMs Update: 0.05ms

2.8ms
0 30
Changes

Insert an element

77

Experimental Evaluation

Quickhull of 1M points,
arrays of 1000 elements

Cumulative Time

213ms
5/ms

Crossover:~5.5

Incremental I

Non Incrementg| — —

Update: 14ms

Changes
Insert a point near the others

/8

30

All inputs: 1M, gauges 1k, times in ms

I;ll;aittii\;le Inc initial u;rollgte crossover speedup
quickhull
adder
to_string 93.8 95.5 0.21 1 449
2.01 7.85 0.09 4 22.2

reverse

github.com/cuplv/iodyn. rust

cd eval, cargo run ——release75—example [name] —— [options]

http://github.com/cuplv/iodyn.rust

Summary

Development of an incremental This library is
computation library where the competitive with
user writes non-incremental code native rust code

Code is available on
Github, and can be
imported into rust
projects through the
standard package
manager

The api allows the user to
specity subsequences,
which can tune
performance to a
particular application

www.github.com/cuplv/iodyn.rust kyleheadley.qgithub.io

80

http://www.github.com/cuplv/iodyn.rust
http://kyleheadley.github.io

