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Incremental computation permeates modern soft-
ware. A computation is incremental if repeating it
with a changed input is faster than from-scratch re-
computation. Programmers implement most contem-
porary incremental functionality in an ad-hoc man-
ner, built into the efficient implementation of the
system being designed. I have been working on
language- and library-based incremental computa-
tion methods in order to increase the efficiency of
code in a more systematic way.

Background The state of the art in general pur-
pose, or language based, incremental computation in-
volves building dynamic dependency graphs of pro-
gram control flow and maintaining memoization ta-
bles of prior results. Dependency graphs allow a
program to mark all functions affected by an in-
put change, and memoization tables provide results
of prior computations that may be used to update
an affected function’s output without recomputing
it. Dependency graphs may maintain a total order
for efficiency, or a partial order for flexibility. Mem-
oization tables often use keys with some computed
value based on a function’s arguments, to allow irrel-
evant minor changes to be ignored. Two of the stan-
dards currently competing on general purpose incre-
mental computation performance are SAC and Adap-
ton. “Self adjusting computation” or SAC [1] is a set
of techniques based around a totally ordered depen-
dency graph and annotated function calls. (Nominal)
Adapton [4] is an incremental computation engine
based on a partially ordered dependency graph and
user-defined “names” to key its memoization tables.

Limitations General purpose incremental compu-
tation requires a lot of overhead in memory and time.
Storing dependency graphs and memoization tables
consumes memory. Creating these features and run-
ning the algorithms that search them consume time.
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To address these limitations, programmers often
organize functions and data so that dependency
tracking and memoization act on groups rather than
individual items. This technique requires direct inter-
action with the incremental system, and adds “tun-
ing” parameters to control the size and extent of each
group. Since this burden is on the programmer, and
orthogonal to the program specification, human error
becomes a source of bugs.

Approach 1 design data structures and higher-
order functions in the Rust language with support
for tuning. These items contain grouping markers
and grouping code respectively. A user then runs
these functions over these data structures, which im-
plicitly perform the groupings based on the markers.
The data structure defines data markers by keeping
data in multiple separate arrays (Rust uses the term
“vector”), and function markers by flags in its nodes.
User code for processing data runs on the vectors
through Rust aggregate features. Memoization of a
function call occurs only if a target data structure
node contains a flag. The memoized group including
this call will contain any proceeding non-memoized
calls.

Gauged Incremental Random Access Zipper
I am designing and implementing an incremental
form of the Random Access Zipper (Raz) [5]. The
Raz represents a sequence with a tree structure in-
ternally, one that rebalances only on the path from
an edited node to the root. Algorithms written this
way ensure compatibility with incremental computa-
tion. My enhancement replaces individual elements
with vectors of elements, with the expected size of
the vector called the “gauge”. The enhancement also
adds markers for function memoization and names
for use with Adapton. Lets call this new version of
the Raz a “Giraz”.
The Giraz does not exclusively perform incremen-
tal computations. When not involved in an incremen-
tal computation, or while preparing for one, the Gi-
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raz has similar performance to equivalent data struc-
tures. For example, the first figure shows the time
to create a sequence from scratch using Rust’s vec-
tor or the Giraz. The test that generated this data
pushes elements into an empty data structure until it
reaches the target size. During this process the vec-
tor needs to occasionally relocate when it reaches its
carrying capacity. The test also switches the mode of
the Giraz from “edit” to “compute” when it reaches
the target size, which takes O(log n) time, where n
is the number of vectors(elements/gauge). This test
uses gauge 1000 and elements with a primitive copy
operation.

Tuning Making a dependency graph node for every
aspect of a program requires so much memory that
traversing it to adjust after a change may take longer
than recomputation. While grouping data and func-
tions can reduce this effect, it does not guarantee bet-
ter performance. Incrementally updating a computa-
tion with everything grouped into one dependency
node is equivalent to from-scratch computation but
with the overhead of the incremental techniques. The
user of the Giraz needs to chose parameters that op-
timize the performance gains of incremental compu-
tation. The design of the Giraz allows for this tuning
in newly added data.

The second figure shows the affects of different
gauges on a non-trivial toy computation. This com-
putation parses a string of numbers and addition
symbols, interpreting the sequence like a reverse-
polish calculation. It takes a sequence of 1M char-
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acters and returns a shorter sequence of integers.
The native rust implementation of this requires under
10ms to parse a sequence. The incremental test folds
over the Giraz, memoizing at the internal markers,
in this case located at vector boundaries. The best
initial incremental computation shown (gauge 1,000)
takes at least 65ms. However, the plot accumulates
the time to recompute after an insertion to the char-
acter sequence. There is a crossover point where it is
faster to use incremental computation than to recom-
pute after each edit. This occurs after ten changes to
the input in our best case. The test clearly demon-
strates the trade off described above: low gauges up-
date fast with slow initial computation, while high
gauges update slow with fast initial computation.

Related Work Prior work on SAC introduced ab-
stract data types [2] to group data and functions to
be memoized. That work concentrates on a generic
interface for hand-crafted data types that can not
be further tuned. Later work on SAC introduces
“blocked lists” [3] similar to using vectors in the Gi-
raz. The block boundaries are based on the data,
allowing the possibility of degenerate blocks. Late
in the paper is a “reduce” benchmark that is similar
to one written for the Giraz. At low gauges (block
sizes), our results are similar, with the Giraz taking
slightly more memory, and slightly more recomputa-
tion time. At high gauges, however, this situation is
reversed, and additionally, the Giraz initial compu-
tation time is over three times faster.
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