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ABSTRACT
Rust includes two “languages” that are not as commonly used as the
main one: a sophisticated macro system and a type-level language
utilizing the trait system. The type-level language can be used in
both a functional style and a logic style. We explore the capabilities
of these languages, focusing on the functional type-level language,
where our main contribution is showing a way to define first-class
type functions in Rust.

Additionally, to show off these languages, we use them to cre-
ate a eDSL. We use a simple variant of the lambda calculus. This
embedded language is parsed by the Rust parser (and macros) and
type checked by the Rust type checker at compile time.
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1 INTRODUCTION
The Rust language[1] reached version 1.0 in mid-2015, bringing
together high-performance, thread-safety, and a minimal runtime
system. We ignore those features in this paper, concentrating in-
stead onmacros and on trait-based generics, the type-level language
of Rust. Both of these are expressive enough to be used as their own
general-purpose programming languages. However, their use does
not seem to be as common as their utility would suggest. This paper
explores those languages, demonstrating features that will be valu-
able to anyone looking to expand their usage of Rust. These features
will be especially useful for creating alternative syntax (macros), ex-
tending polymorphism (type functions), and guaranteeing program
properties (extended type system).

1.1 Macros
Macros are generally used for syntactic abstraction. They can reduce
code size when patterns of characters are present, but they cannot
be written as a common function. They are often expanded into
code before compiler features like type-checking are run. In Rust,
macros are fairly advanced, with multiple rounds of expansion,
different levels of parsing, hygienic variables, and pattern matching.
Though we will be using the original macro system, Rust has been
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enhanced with procedural macros, which allow runtime code to
handle the expansion.

These advanced features allow us to do more than write syntactic
functions that take parameters, we can use macros to separate Rust
code from DSL code written in another language. The parameter
to the macro in this case would be arbitrary text that the macro
parses into a syntax tree before transforming into Rust code to be
handled by the type-checker and compiler.

This use of macros is available in other languages as well. Racket,
notably, is based on a philosophy of language-based programming.
Racket macros are even more sophisticated than those of Rust, and
Racket programmers are encouraged to build DSLs with them.

Rust programmers are not usually encouraged to build new lan-
guages, but a simple one may be appropriate for a project. This
paper demonstrates some techniques for parsing them into an AST
with Rust macros, which can then be passed to a custom type
checker.

1.2 Traits
Types provide languages with a simple form of static verification
that compilers may use to assist programmers in their work. Most
typed languages allow users to create new types, often to define
complex data structures that need to maintain certain invariants.
For example, a binary tree must always have two or fewer branches
at each node, and each node contains data of the same form. Once
defined, the compiler will generate errors when the tree is used
inappropriately, just as it would when built-in types are misused.

But users often want to create abstract types just as they create
abstract code by writing functions. Most languages allow users to
abstract the data in binary trees, but few allow them to also abstract
the links between branches.

Rust provides users some additional flexibility of types with traits.
When used, these restrict use of types to those with a particular
set of properties, like the ability to add two terms together. The
restriction gives us a guarantee, which can be used to, for example,
provide a tree with the additional functionality of adding together
all of its data, regardless of the type of data the user had chosen.

The ability to abstract the links between branches of a tree (to spe-
cialize them for performance or parallel processing) is often called
higher-kinded types, or HKT. There are a number of discussions
online about how to get around the fact that Rust has no explicit
support for them. People have simulated HKT if a few different
ways [4, 7]. These are often complex and must be re-implemented
for new data types. HKT is a feature often requested from the Rust
community, and there is work towards it by the Rust development
team.

However, Rust does have the ability to have type functions, a
more general technique than HKT. In this paper we go into detail
about how to deal with type functions in Rust: techniques for cre-
ating them, passing them as parameters, and restricting them with
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the rest of the type system. While there is no explicit syntactic
support, simple type functions like those of HTK require only a
few lines of code to set up, and about twice as many characters to
use as a regular function call would.

One goal of this paper is to share these features with the develop-
ers of Rust, so that they may take them into account as development
proceeds. They will have knowledge beyond the scope of this work,
and can choose to integrate it into plans, or discourage its use as
appropriate.

1.3 Contributions
In this paper we explore secondary features of the Rust language
in the context of language implementation. We make the following
contributions:

• Provide techniques for creating type functions
• Provide techniques for type-checking type functions
• Demonstrate parsing a simple language with macros
• Demonstrate type-checking a DSL at compile time

This paper is divided into two parts, the first shows off advanced
techniques, and the second makes use of some of them to parse
and type-check a simple DSL. Each part is further divided into two
subparts. The first deals with macro features and the second deals
with trait features.

We introduce Rust macros in Section 2. These are defined with a
name and a list of rewrite rules. We use this to mirror BNF gram-
mars, with a different macro for each component of the grammar.

Since higher-order functions essentially form a language on their
own, and we will rely on traits for implementation of our type-level
functions, we refer to them as “TraitLang” for the remainder of
this paper. We describe our usage of TraitLang in Section 3. To
avoid confusion when discussing type-level values, we refer to one
as a “struct”, the keyword used when defining a type in Rust. We
introduce the basic constructions in Section 3.1

TraitLang is interpreted by the Rust trait resolution algorithms,
which are expected to be enhanced in the future. In this paper we
use the original semantics from version 1.0, though the Rust team
almost never introduces breaking changes (until the next major
version). We also rely on the Rust type-checker to verify that our
programs are well-formed. To verify correctness, we can define
variables of our output types, which are all singletons.

Like types in a common language, traits classify structs, but
unlike types, a struct can “implement” an unlimited number of
traits. Each of these traits may contain associated types specific
to its implementation by a struct. This implementation therefore
acts as a mapping from one struct to another, one of the ways to
define a function. However, to allow first-class functions, we prefer
a different technique, described in Section 3.2, that uses a struct as
a first-class function, and an implemented trait as the function’s
expression.

Another use for a mapping is to map values to their types. We
introduce a trait called “Typed” in Section 3.3, and expand its use
to functions in Section 3.4. Providing constraints on structs and
functions allows us to define our own type system. Both here and
in our DSL example later we set up a standard one, but there’s no
reason why something more exotic couldn’t be done.

macro_rules! expr {

(0) => (Num(Zero ));

($a:tt $p:tt) => (App(expr![$a],expr![$p]));

({^$e:expr}) => ($e);

(($($e:tt)+)) => (expr![$($e)+]);

($n:tt + $($ns:tt)+)

=> (Plus(expr![$n],expr![$($ns )+]));

}

Figure 1: Selected macro rules (out of order)

The next part of the paper walks through our implementation
of the lambda calculus with addition as a DSL. We describe parsing
in Section 4, type checking in Section 5. Both are rather elegantly
implemented, since the techniques used mimic the grammar and
operational semantics used to define languages. We do however
need some supporting functions for our operational semantics,
especially for dealing with a context. We have not yet developed
an elegant way to implement functions with nested branching.

We conclude with some discussion of additional concerns in
Section 6 and related work in Section 7.

2 RUST MACROS
Each Rust macro is an identifier and a list of rewriting rules, from a
pattern matcher to a template. The first rule whose pattern matches
is used to expand into the template. Macros are commonly used
to transform code snippets, but they have a mode that deals with
arbitrary tokens.

The matcher may include literals, pattern variables, and re-
peaters. Pattern variables are prefixed with a $ and include a “frag-
ment specifier”. We will mostly be using token trees (tt), which
macro invocations are initially parsed into. Token trees are either a
single token, or a parenthesized ((),{},[]) sequence of tokens. We
also make use of expr, which signals the Rust parser to fully parse
the match as a Rust expression. Repeaters $( ... )+ match multiple
instances of their inner pattern.

The template may also include literals, variables, and repeaters.
They may also include macro invocations (but not definitions),
allowing recursive calls, even through variables. Some selected
rules from our later example are in Figure 1, explained below.

Later we will use the expr! macro to parse syntax into an AST.
For now, we use selected portions shown in Figure 1 to introduce
Rust macros. The first line contains only a literal in the matcher, to
transform a number into its AST representation. (Our AST distin-
guishes raw natural numbers from syntax.) There are no pattern
variables, so the 0 must be matched exactly. The second line shows
two pattern variables specified as token trees. This pattern matches
any two tokens, and the expander recursively invokes the expr!

macro on each, placing them within an App node in our AST. The
third line is used to insert pre-created expressions into our AST.
The pattern variable is parsed and used directly. The other tokens
are literals and must be matched exactly. Using one of the forms of
parenthesis to surround the match allows it to be treated as a token
tree before reaching this rule.

The final two rules of Figure 1 show off the macro repeaters. The
first is a minimal repeater surrounded by parentheses, for parsing
parenthesized expressions. The contents of the parentheses are
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trait Nat {}

struct Zero;

impl Nat for Zero {}

struct Succ <N>(N);

impl <N:Nat > Nat for Succ <N> {}

type One = Succ <Zero >;

Figure 2: Declaration of Natural numbers in Rust’s type-
level language

copied into a recursive invocation. The final rule is a more complex
version of the same principal, used to put everything after the first +
into the second section of the Plus AST node (after a recursive call).
If the matched pattern contained multiple +’s, they would evaluate
left to right. Our DSL doesn’t need to deal with order of operations,
but one that did would need a more complex matcher.

3 TRAITLANG
TraitLang is a lazy, untyped, interpreted language with some fea-
tures similar to both logic and functional languages. It is declarative
and order of declaration doesn’t matter, as all items are fully recur-
sive. TraitLang is pure, since Rust’s type-level items do not have ac-
cess to the object language at all. It is not even possible to get output
from a TraitLang program directly, instead, it will be used to sup-
port polymorphism and invariant checking for the object language.
Because TraitLang is lazy, the well-formed check also requires that
type aliases be used.We assume a "fn main() { let x:TypeAlias1; ... }"
with each alias used at least once.

This section describes the use of TraitLang as a functional lan-
guage. The syntax and programming style are very different from
traditional languages, so we take some care in walking through a
series of progressively more complex examples. TraitLang is inter-
esting on its own, so we go a bit beyond what is needed to imple-
ment our DSL, describing a method for using first-class functions,
and providing additional type systems for them. Type checking
our later example mostly makes use of a logical style, but does
use supporting functions. The membership function for contexts
(described in Section 5.1) is rather verbose, since TraitLang is not
well-suited for functions with multiple branches.

3.1 A Hidden Language
When we ignore Rust’s main language and focus on the trait lan-
guage, we are left with four items: declaration of a trait, declaration
of a struct, implementation of a trait for a struct, and declaring a
type alias, which functions like a let-binding. The basic syntax of
these items in shown in Figure 2, which gives the standard defini-
tion of natural numbers. Here we define Nat as a trait, which works
well at first, but is not sophisticated enough for a formal definition.
Structs may implement multiple traits, allowing a later “crate” (Rust
package) to implement e.g. trait Real for the same Zero. We return
to this issue later.

Figure 2 continues by declaring a struct called Zero and imple-
menting Nat for it. This is the simplest form of the declarations.
More complex is Succ, which requires a parameter when the struct

trait AddOne : Nat { type Result:Nat; }

impl <N:Nat > AddOne for N { type Result = Succ <N>; }

trait SubOne : Nat { type Result:Nat; }

impl <N:Nat > SubOne for Succ <N> { type Result = N; }

type Two = <One as AddOne >:: Result;

Figure 3: Using traits as mappings

is used. In this case N may be any other struct, including a recursive
Succ (though infinite sequences cannot be defined). The second to
last line is read “For all N such that N implements Nat, implement
Nat for Succ<N>”. Using this definition, the compiler will not give
an error when using e.g. Succ<Red> (assuming a struct Red has been
declared), but it would not implement Nat. We could have given
a trait bound when declaring Succ, that is, “struct Succ<N:Nat>(N);”.
Doing so would cause a compiler error on use of Succ<Red>. We can
use a struct by creating an alias like in the last line. The struct must
be concrete, with no type variables.

There are a few syntactic peculiarities in Figure 2. Trait defini-
tions end in curly braces, which are usually filled with object-level
function definitions. We will add associated types here later. Formal
type parameters, which can appear in any of the four syntactic
items, are placed between angle braces and separated by commas.
Each onemay be required to implement any number of traits, placed
after a colon and separated by a “+”. Struct definitions must include
each type parameter in parens, which is required for the object-level
language, but we will not use it anywhere else. In the second to last
line of Figure 2, the formal type parameters are after the impl, and
their use is after the Succ. Usage does not include trait bounds.

3.2 A Functional Language
The full power of a functional language requires having functions.
Figure 3 presents the simplest form available, using a trait as a
mapping. Like defining Nat as a trait above, this form is simpler but
limited, and we mainly use it for DSL meta-functions. We describe
the syntax and semantics of this form first before moving on to one
that allows first-class functions. In the figure, we define addition
and subtraction by one.

Figure 3 introduces bounds for trait declarations, associated
types, and how to access them. The first line declares a trait AddOne
that requires any struct it’s implemented for to also implement
Nat. It includes a single associated type named Result that must
also implement Nat. The implementation on the next line shows
off the power of variables, implementing AddOne for every Nat, and
providing an associated type dependent upon it. SubOne is similar,
but note that it is not implemented for every N. Every associated
type must be defined in order to implement a trait, but traits need
not be implemented for every struct. This can be useful to en-
sure that suitable values are provided to computations. If appropri-
ate, we could implement SubOne for every Nat by including the line
“impl SubOne for Zero { type Result = Zero; }”

The last line in Figure 3 uses the unfortunate syntax for accessing
an associated type. Both of the traits here have the same associated
type name, so we must disambiguate by naming the struct, the trait
implemented on the struct, and the associated type of that trait.
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trait Func2 <A,B> { type Result; }

struct Add;

impl <N:Nat > Func2 <Zero ,N> for Add { type Result = N; }

impl <N1,N2> Func2 <Succ <N1>,N2> for Add where

N1:Nat , N2:Nat ,

Add : Func2 <N1,N2>

{ type Result = Succ <<Add as Func2 <N1,N2 >>::Result >; }

type Three = <Add as Func2 <One ,Two >>:: Result;

Figure 4: Structs that can be used as functions

The syntax is slightly better in Figure 4 where we use structs as
functions.

Rust generics use type variables, but there are no trait variables.
If we were to continue to use traits as we did above, we would
run into problems with generics and first-class functions in our
type-level language. Below, we use traits to represent higher-level
concepts. For example, there is a trait to mean that a struct is a
function, rather than using a trait as a function. Figure 4 declares
a trait representing a function of two variables. It then declares a
struct Add and implements the inductive algorithm for adding two
numbers.

Figure 4 introduces trait parameters which are similar to struct
parameters. It also introduces the “where” clause, which can be used
to add arbitrary requirements to any item. Here, the inductive case
for defining Add requires Add be defined on a smaller structure. Since
it is guaranteed by the where clause, we can look up its associated
type to use in the definition of the result. Since Add is a struct, it can
be passed as a parameter to functions just like One and Two were in
the last line. Since the function parameters are declared on the trait,
it can be called by any code with a where clause recognizing it as a
function. We do this at the end of the next section, in Figure 6.

3.3 A Constraint Language
In this section we describe the final piece of syntax that will allow us
to emulate a standard type system in our language. So far, we have
been using traits as if they were types. But structs can implement
multiple traits, so our functions can be applied to multiple “types”.
In order to have one type per struct, we need a mapping. Figure 5
demonstrates using a trait to declare types.

Figure 5 repeats functionality defined above, but in our form
with types. The fourth line can be read: “For all N of type Natural, the
type of Succ<N> is Natural”. Note that we now have multiple levels
of constraint, since we do not need to constrain the associated
type. Func1 requires its argument and result to be Typed, but doesn’t
require a specific type. Applying it to Three in the last line works
the same as our prior example, but now the compiler is checking
the associated type (required for arguments of Next) as well as the
trait of Three.

We now know all the features we need to use TraitLang as a
general-purpose language. Our language is untyped, but uses traits
both to add and remove capabilities. Functions were added from
mappings in traits, and the ability for Succ to take any parameter
was removed by a constraint. Structs can be used as any value in
the language, even when that value is acting as a different feature,

trait Typed { type Type; }

struct Natural;

impl Typed for Zero { type Type = Natural; }

impl <N:Typed <Type=Natural >> Typed for Succ <N>

{ type Type = Natural; }

trait Func1 <A:Typed > { type Result:Typed; }

struct Next;

impl <N:Typed <Type=Natural >> Func1 <N> for Next

{ type Result = Succ <N>; }

type Four = <Next as Func1 <Three >>:: Result;

Figure 5: The typing trait, allowing us to emulate a standard
type system

struct Apply;

impl <A,B,R> Func2 <A,B> for Apply where

B: Typed , R: Typed ,

A: Func1 <B,Result=R>

{ type Result = R; }

type Five = <Apply as Func2 <Next ,Four >>:: Result;

Figure 6: A function that takes another as an argument

like a type or a function. For example, Figure 6 shows a use of first-
class functions. Using structs as types allows type-based operations,
as we will see next. We also see a syntactic optimization in the
third line. We can constrain the associated type as well as type
parameters. This in effect "binds" R to the result of A applied to B,
allowing us to use it rather than the longer form used in Figure 4.

3.4 A Typed Language
We now take a step beyond the needs of our DSL to show how to
constrain TraitLang to be a typed language. This requires function
types and their use to constrain the trait that implements our func-
tions. But our types are structs and Rust uses traits for constraints.
We also do not have access to for-all variables in trait (or struct) def-
initions like we do in implementations. So we need an intermediate
trait that picks out the relevant structs from our type and passes
them along as usable constraints. This is what the first code block
in Figure 7 does.

The first line of Figure 7 defines the type of our functions of three
variables, Arrow3. The next few lines define our intermediate trait,
TypedFunc3, and implement it on all structs that have type Arrow3,
extracting the inner structs as associated types. The trait used to
express functions, Func3, is then defined and can constrain its param-
eters to the associated types of its TypedFunc3 trait. Now to define a
function in TraitLang, we also need to provide its struct with a type,
and that type will be enforced in the function’s implementation, as
can be seen in the next two code blocks.

The second and third code blocks in Figure 7 are examples of
functions typed as explained above. Each of them defines the func-
tion name a struct, then gives them a type before implementing
the function. The first shows how easy a simple function is to
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struct Arrow3 <T0,T1,T2,T3 >(T0,T1,T2,T3);

trait TypedFunc3 {type T0; type T1; type T2; type T3;}

impl <T0,T1,T2,T3,A> TypedFunc3 for A where

A:Typed <Type=Arrow3 <T0,T1,T2,T3>>

{ type T0=T0; type T1=T1; type T2=T2; type T3=T3; }

trait Func3 <A,B,C> : TypedFunc3 where

A:Typed <Type=Self::T0>,

B:Typed <Type=Self::T1>,

C:Typed <Type=Self::T2>,

{ type Result:Typed <Type=Self::T3 >; }

struct AddOneTwo;

impl Typed for AddOneTwo

{ type Type=Arrow3 <Natural ,Natural ,Natural ,Natural >; }

impl Func3 <One ,Two ,Zero > for AddOneTwo { type Result=Three; }

impl Func3 <One ,Two ,One > for AddOneTwo { type Result=Four; }

impl Func3 <One ,Two ,Two > for AddOneTwo { type Result=Five; }

struct Add3;

impl Typed for Add3

{ type Type=Arrow3 <Natural ,Natural ,Natural ,Natural >; }

impl <A,B,C,R0,R1> Func3 <A,B,C> for Add3 where

A:Typed <Type=Natural >, B:Typed <Type=Natural >,

C:Typed <Type=Natural >, R1:Typed <Type=Natural >,

Add : Func2 <A,B,Result=R0>,

Add : Func2 <R0,C,Result=R1>,

{ type Result = R1; }

type Six = <Add3 as Func3 <One ,Two ,Three >>:: Result;

Figure 7: The typing constraint and typed functions

define when using concrete inputs and outputs. There is no differ-
ence in the implementation from an untyped version. The second
shows that, unfortunately, when variables remain abstract, their
types must be made explicit. The Rust team has plans to implement
constraint inference, so this may not be an issue in the future.

4 PARSING OUR DSL
The DSL we’re implementing is the simply-typed lambda calculus
with numbers and addition. Our grammar is standard and shown
in Figure 8. The AST result is defined in Figure 12, discussed along
with well-formedness checks in Section 5.2. Using macro rules
for parsing means that we can follow our grammar very closely.
We create one macro for each syntax class, and one rule for each
syntax form. Our only deviations are in representing numbers and
variables, and adding an injection point for easier composition, as
described in Section 2. The full parser is shown in Figure 9.

Representing numbers and variables is a pain point of thismethod.
Since we’re working in TraitLang, we don’t have access to any run-
time functionality, only logic and induction. Integers and arithmetic
are not available, so we use inductively-defined natural numbers
(nats). The parser needs to map number literals to nats, so we need
a rule for each number. Variables are available as additional structs,
which would still add lines to the code. Also, we need to abstract
over variables in our type checking later, but Rust does not give us
an easy way to check both equality and inequality. To overcome this,
we use nats as variables as well, with AST nodes that distinguish
them from numbers.

Many of the rules in Figure 9 were shown previously or are
similar to those. We describe some additional complexity here. The

e := expressions

(e) parentheses

n number

v variable

lam (v:t) e abstraction

lam (v1:t1)(v2:t2)... e

multiple abstraction

e1 + e2 addition

e1 e2 application

e1 e2 e3 ... multiple application

t := types

(t) parentheses

Number base type

t1 -> t2 -> ... arrow type

Figure 8: The grammar for our DSL

macro_rules! expr {

(($($e:tt)+)) => (expr![$($e)+]);

({^$e:expr}) => ($e);

(0) => (Num(Zero ));

(1) => (Num(Succ(Zero )));

...

(x) => (Var(Zero ));

(y) => (Var(Succ(Zero )));

...

(lam ($x:ident : $($t:tt)+)

$(($($ts:tt)+))+ $($e:tt)+

) => (Lam(

expr![$x],

typ![$($t)+],

expr![lam $(($($ts )+))+ $($e)+]

));

(lam ($x:ident : $($t:tt)+) $($e:tt)+) => (Lam(

expr![$x],

typ![$($t)+],

expr![$($e)+]

));

($n:tt + $($ns:tt)+)

=> (Plus(expr![$n],expr![$($ns )+]));

($a:tt $p:tt) => (App(expr![$a],expr![$p]));

($a:tt $p:tt $($ps:tt)+)

=> (expr ![{^ App(expr![$a],expr![$p])} $($ps),+]);

}

macro_rules! typ {

(($($ts:tt)+)) => (typ![$ts]);

(N) => (Number );

($t:tt -> $($ts:tt)+)

=> (Arrow(typ![$t],typ![$($ts )+]));

}

Figure 9: The parser for our DSL

multi variable lambda rule has a nested repeater. The inner matches
all the var and type tokens, and the outer matches the parenthesized
groups. Before it is the first variable and type, which are used to
create the lambda AST node. The repeater represents additional
variables, which are used to create a nested lambda node with a
recursive call. The lambda nesting pattern is convenient in this
way, but the application nesting pattern is not. It is the reason we
created the injection rule above. The nesting of applications must
be as deep initially as the number of parameters, which we don’t
know. So we create the first AST node and pass it unchanged into
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trait NatEq <N> { type Eq; }

impl NatEq <Zero > for Zero { type Eq=True; }

impl <N> NatEq <Succ <N>> for Zero { type Eq=False; }

impl <N> NatEq <Zero > for Succ <N> { type Eq=False; }

impl <N1,N2,E> NatEq <Succ <N1>> for Succ <N2> where

N2: NatEq <N1,Eq=E>

{ type Eq=E; }

Figure 10: Equality function for natural numbers

the recursive call. The type rules are simple because arrow nests
the lame way that lambda does.

With this macro definition, we may now write code such as
let e = expr![(lam (y:N)(x:N->N) x y) 2 (lam (x:N) 1+x)];, and e will
hold an AST for a reversed parameter application that can re-
duce to a number. This is typed-checked by the empty function
is_typed(&e,&typ![N]) that activates the trait resolution described in
the next section.

5 TYPE CHECKING OUR DSL
This section describes the code for our type checker, divided into
two parts. The first deals with functions for context lookup, and is
done in the functional style introduced in Section 3. The next part
handles static checks of our AST, and are written in a more logical
style. This is valuable because, like for parsing, our code can mirror
the rules from the notation of the theory.

5.1 Supporting functions
Context lookup appears in type checking rules, but often as a func-
tion over the data structure for simplicity. We mirror that here,
but still need a full description of the algorithm. Context lookup
involves comparing variables to find our target. As seen above, we
have implemented our variables as natural numbers, so we need an
equality function for them. This is shown in Figure 10. It follows
the method from Figure 3, since we don’t make use of first-class
functions. There are three base cases for equality with zero, fol-
lowed by an inductive case. This code is rather elegant, but the
membership function that makes use of it is not.

The context membership function (called Contains in code) re-
quires a data structure and two branch points, one for checking
if we’re reached the end of the list, and one for checking if we’ve
reached our target variable. TraitLang only allows one branch point
and one return value per branch. To get around this, we create two
functions, the first one passing the results of its check to the second
as parameters. The second then branches once based on all the
information. Even for this simple function, the code is difficult to
read. We work through it below.

Figure 11 shows the code of the context membership function.
The first two lines are the data structure, implemented like a linked
list. It can be empty or contain the natural number id of a variable,
a type, and the next node. The Contains function takes an id and
returns an optional value, in the case of calling it on an empty con-
text, it returns None. When called on a non-empty context, Contains
checks for equality with the target, passes that result, along with
the type, as parameters to Contains2 called on the rest of the context
and returns the result of Contains2. Contains2 has enough information

struct EmptyCtx;

struct TypeCtx <Id,Typ ,Next >(Id,Typ ,Next);

trait Contains <Id> { type Result; }

impl <N> Contains <N> for EmptyCtx

{ type Result=None; }

impl <Check ,First ,Typ ,Next ,Eq,R>

Contains <Check > for TypeCtx <First ,Typ ,Next > where

Check: NatEq <First ,Eq=Eq>,

Next: Contains2 <Eq,Typ ,Check ,Result=R>,

{ type Result=R; }

trait Contains2 <Eq,Map ,Check > { type Result; }

impl <Map ,C,Cxt > Contains2 <True ,Map ,C> for Cxt

{ type Result=Some <Map >; }

impl <Map ,C> Contains2 <False ,Map ,C> for EmptyCtx

{ type Result=None; }

impl <Check ,First ,T,Typ ,Next ,Eq,R>

Contains2 <False ,T,Check > for TypeCtx <First ,Typ ,Next > where

Check: NatEq <First ,Eq=Eq>,

Next: Contains2 <Eq,Typ ,Check ,Result=R>,

{ type Result=R; }

Figure 11: Membership function for contexts

to chose one of the three end-points of the algorithm. If the prior
equality check was true, it returns the prior type (called map in the
code) regardless of the rest of the context. If the check was false
and the rest of the context is empty, it returns None. If their is more
context to process, it does an equality check on the next value and
calls itself recursively the same way Contains did.

5.2 Type checking
Type checking starts by checking that the AST is well-formed. The
code is in Figure 12. Most rules define the syntax that we’re using
as well-formed if its sub-syntax is well-formed. The exception is
the Lam case, which requires a variable as its first item. There are
different traits used for different parts of the syntax, like WFNat and
WFType, to make sure they are used in the proper places. There is
little complexity to the code, it mostly tags some constructions as
appropriate.

Our type checking code in Figure 14 is among the most simple
and elegant in this paper, because we are able to directly mirror the
type checking rules. We use a trait called Typed parametrized by a
context. Premises are found in the “where” clauses with the syntax
form preceding them. The resulting type is an associated type, to
make sure that there is only one type per value. Otherwise, the rules
are direct translations of the typing rules for the lambda calculus.
For example, the last rule, App, requires that the first expression (E1)
be an Arrow type (from T1 to T2) in the current context (Ctx), and the
second expression (E2) be of the type at the front of the arrow (T1),
also in the current context. The type of the App expression is the
type of the end of the arrow (T2).

The last piece of or type checker is the code to invoke it, requir-
ing a type for our AST. Figure 13 shows what looks like runtime
functions, but they contain no code. Instead, each requires that
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trait WFNat {}

impl WFNat for Zero {}

impl <N:WFNat > WFNat for Succ <N> {}

trait WFType {}

struct Number;

impl WFType for Number {}

struct Arrow <T1,T2 >(T1,T2);

impl <T1:WFType ,T2:WFType > WFType for Arrow <T1,T2> {}

trait Expr {}

struct Num <N>(N);

impl <N:WFNat > Expr for Num <N> {}

struct Plus <N1,N2 >(N1,N2);

impl <N1:Expr ,N2:Expr > Expr for Plus <N1,N2> {}

struct Var <N>(N);

impl <N:WFNat > Expr for Var <N> {}

struct Lam <V,T,E>(V,T,E);

impl <N:WFNat ,T:WFType ,E:Expr > Expr for Lam <Var <N>,T,E> {}

struct App <E1,E2 >(E1,E2);

impl <E1:Expr ,E2:Expr > Expr for App <E1,E2> {}

Figure 12: Well-formedness checking logic

fn is_wf_expr <E:Expr >(e:&E) {}

fn is_wf_type <T:WFType >(t:&T) {}

fn is_typed <E,T>(e:&E,t:&T) where

E:Typed <EmptyCtx ,T=T>

{}

Figure 13: Functions to invoke the type checker

the parameters satisfy some trait. This will activate the compiler’s
trait resolution, type-checking our macro-generated AST. The first
two functions check the well-formedness of an expression and a
type, respectively. The last checks that the given expression has
the given type, in the empty context.

6 DISCUSSION
Running our code may require an initial conversion, but would
otherwise be standard. When defining a struct in Rust, it generates
a singleton constructor (parametrized as appropriate) with the same
name. This is what we’ve been using in our AST nodes, while the
struct itself is used in our implementation of traits. From the runtime
perspective, each AST node is a different type, which can make
coding up the evaluation difficult. A conversion to an AST using
tagged variants of types (Rust’s enum) would simplify the eval code.

The ability to define and use a type system (for the type-level
functions) seems really powerful, but ultimately must support the
more mundane code that is more commonly written. A type-level
type system may be too far removed to be useful. We imagine that
a dependent type system may be useful here to prove properties
about code as it’s compiled. We have experimented with such a
system, but not thoroughly enough for this paper, and without

trait Typed <Ctx > { type T; }

impl <N,Ctx > Typed <Ctx > for Num <N> { type T=Number; }

impl <N1,N2,Ctx > Typed <Ctx > for Plus <N1,N2> where

N1:Typed <Ctx ,T=Number >,

N2:Typed <Ctx ,T=Number >,

{ type T=Number; }

impl <N,Ctx ,T> Typed <Ctx > for Var <N> where

Ctx:Contains <N,Result=Some <T>>

{ type T=T; }

impl <Ctx ,N,T1,T2,E> Typed <Ctx > for Lam <Var <N>,T1,E> where

E:Typed <TypeCtx <N,T1,Ctx >,T=T2>,

{ type T=Arrow <T1,T2 >; }

impl <Ctx ,E1,E2,T1,T2> Typed <Ctx > for App <E1,E2> where

E1:Typed <Ctx ,T=Arrow <T1,T2>>,

E2:Typed <Ctx ,T=T1>

{ type T=T2; }

Figure 14: Type checking rules for our DSL

Rust syntactic support, it seems too complex for all but the most
important tasks.

7 RELATEDWORK
A similar approach to higher-kinded types is [2]. In that gist, a
trait is used to represent the HKT. It is very similar to the author’s
equivalent [5], but it has additional complexity so that a built-in
type can be passed to a function directly as a type constructor.
Working off of an existing type rather than a new type function
doesn’t allow for specializing for its use case.

A similar project is “turnstile” [3] for the Racket language. The
authors similarly take advantage of a compile-time algorithm to
do type checking. In their case, they use Racket’s macro expander,
adding typing annotations to the syntax objects it creates. Rust
traits provide a declarative way to add meta-data to types, allowing
much simpler use, and the ability to follow the typing rules more
directly. On the other hand, Racket has more advanced capability
in its macro system, allowing a layer of abstraction that lets the
user follow typing rules as well. Racket also provides a mechanism
for generating useful error messages.

8 CONCLUSION
We have shown how to use Rust traits to define first-class type
functions. We have shown the implementation of a DSL with a
shallow embedding in Rust. The Rust parser, through the macro
system, was used to parse it. The Rust compile-time algorithms
were used to type check it. And we suggested a way for the Rust
runtime system to run the code, since that is a far more common
task. A full demo can be run and modified from [6].

It is our hope that these explorationswill inform further language
design. Rust’s traits were not originally intended to be used this
way, as is obvious looking at error messages of some programs that
fail to type check. We hope that type-level programming becomes
more valuable in the future, and use cases like those demonstrated
will highlight areas to work on.
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