
Correct-by-Construction Interactive Software:
From Declarative Specifications to Efficient Implementations

Kyle Headley Matthew A. Hammer
University of Colorado at Boulder

Introduction. Today’s interactive software is wildly suc-
cessful and pervasive, invading nearly every facet of our
daily lives. An interactive system, like a GUI, is also par-
ticularly complex, due to the nature of providing a rich, re-
sponsive, interactive experience for users.

Today’s software platforms further compound this com-
plexity for humans and tools alike because they force the
programmers to design their application behavior in terms of
implementation concepts, rather than declarative specifica-
tions. Typically, framework models for applications are com-
plex: they consist of global, higher-order state and control-
flow that is rarely direct, but often contorted into callbacks or
continuation-passing-style (e.g., to be event-driven, and/or
asynchronous) [5]. Seemingly, this complexity is required
for the framework to be responsive and flexible.

However, designing user interaction based solely on such
application models is inherently flawed, since the resulting
design process omits a key element: a declarative specifica-
tion. A declarative specification is most useful to its design-
ers and users alike when it is not framed within the arcane
ontology of the latest software framework, but rather given
as a simple executable program that is independent from the
underlying framework implementation.

As an alternative to framework-driven design, this ex-
tended abstract advocates a design process that we call
Correct-by-Construction Interaction. Many of the under-
lying principles behind this process are not new, going back
to pioneers such as Dijkstra, who famously advocated that
programs and specifications should be developed hand-in-
hand, and who proposed starting with a specification, and
systematically deriving an implementation that is correct by
construction. Our contribution to this tradition consists of
the following insight: A promising bridge between declara-
tive specifications and efficient, responsive applications are
general-purpose programming language techniques for in-
cremental computation.

To explore this connection, we designed and imple-
mented a prototype text editor, IC-Edit. After sketching
a specification, we implemented it in about 400 lines of
OCaml, without any special libraries1. We explored this

1 We use OCaml’s standard Graphics library to perform interactive I/O.

working prototype to resolve non-obvious design choices
(e.g., “In the presence of multiple cursors, when does edit-
ing affect the placement of inactive cursors?”, “How does
undo/redo affect past input modes?”).

Below, we summarize the features of IC-Edit, providing
a video demo for further details. Next, we tour the formal
specification of IC-Edit, on which our OCaml prototype
is based. The prototype is simple to understand, but very
inefficient for large workloads. We explore these problems
in further detail, highlighting the sources of this inefficiency.
Finally, we point to a promising solution, based on recently-
proposed incremental computation techniques.

Features of IC-Edit. In addition to common editor features
like insertion and deletion, IC-Edit includes an undo buffer
tracking the entire history of the document. We have also in-
cluded the ability to add additional cursors to the document.
The writer makes use of only one active cursor at a time, but
can switch between cursors at will. This can emulate multi-
ple users, or repositioning the cursor within the text. IC-Edit
has four input modes, for permutations of: insertion vs over-
writing, and left-to-right vs right-to-left cursor direction. For
a tour of IC-Edit’s features, see these videos:

https://github.com/cuplv/icedit-demo

Formal Specification of IC-Edit. To formalize the interac-
tive behavior of IC-Edit, we first codify the concepts of user
actions and editing commands. Editing commands modify
the text buffer and manage the pool of available cursors. A
user action a consists of an editing command c, or the ac-
tions that undo and re-do past commands (undo and redo):

User Action a ::= cmd c | undo | redo
Edit Command c ::= ins d t | rm d | repl d t | mv d

| mk α | sw α | jmp α | join α
Direction d ::= L | R

Text symbol t ::= · · ·
Cursor symbol α ::= · · ·

Formally, an editing command c consists of inserting, re-
moving or replacing text symbols (ins, rm, repl) or mov-
ing the active cursor within the text (mv), making new cur-
sors (mk), switching among existing cursors (sw), jumping

https://github.com/cuplv/icedit-demo

to existing cursors (jmp), or joining the active cursor with an
inactive one (join).

A symbol sequence S consists of cursor and textual sym-
bols, and a symbol zipper 〈S1 || α || S2〉 consists of symbol
sequences to the left (S1) and right (S2) of the active cur-
sor α:

Symbol sequence S ::= ε | S :: t | S :: α
Symbol zipper Z ::= 〈S1 || α || S2〉

Using these structures, zipper-transforming semantics for
single commands c and command sequences C are given by
the judgement forms Z1 ` c −→ Z2 and Z1 ` C ⇓ Z2,
respectively. These semantics are directly inspired by the
zipper pattern, which provides a general approach for de-
scribing persistent (applicative, purely functional) data struc-
tures that undergo small changes. First proposed for n-ary
trees by Huet, the zipper pattern has since been adapted and
generalized extensively [1, 4, 6].

We use a second instance of the zipper pattern in the se-
mantics for running an action sequence A, defined by the
judgement A ⇓ C1 ; C2; we read this as “perform-
ing action sequence A yields command history C1, and
undo buffer C2.” Based on the outcome of these actions,
〈ε || α || ε〉 ` rev(C1) ⇓ Z defines the final state of the
buffer Z after command history rev(C1). (The zipper repre-
sentation for C1 uses reverse order, from most to least recent
commands).

The full specification for IC-Edit requires five judgements
and 25 inference rules in total; it is available online:

https://github.com/cuplv/icedit-calc

Performance Challenges. Figure 1 illustrates a major per-
formance challenge for IC-Edit: As the number of past ac-
tions grow, the time required for IC-Edit to respond after
each action grows super-linearly. To produce Figure 1, we
randomly generate a list of actions as follows: half of the ac-
tions are insertion commands, 20% are remove commands,
most of the remaining actions consist of replace and cursor
movement commands. Only 1% of random actions are undo
actions, or commands that create, switch and jump among
cursors. Under this random distribution of actions, we ob-
serve that after 100k actions, the response time is 120ms,
which gives a noticeable lag. At 200k the response times de-
grades to 0.7 seconds, and at 500k it is over 4 seconds.

Switch and jump commands, though infrequent in this
workload, are the most expensive for IC-Edit to process
since it does so naively. Specifically, each such action re-
quires linear time. Further, since IC-Edit naively reprocesses
the entire history after each action, this results in a quadratic
trend, as the plot shows. Without these cursor commands,
the plot is linear, taking only 0.12 seconds per action with a
history of one million previous commands.

The quadratic and linear times mentioned above are both
undesirable. Ideally, the plot would be sublinear, even in the
presence of cursor management (switching and jumping).

0

10

20

30

0 200 400 600 800 1000

Re
sp
on
se
	 T
im
e	
(s)

Command	 History	 Length	 (x1000)

Figure 1. Response time versus command history length.

Specifically, we want an efficient implementation of IC-
Edit to process each user action in O(log |A|) time, where
sequence A is the action history.

Proposed Solution: Incremental Computation. To bridge
the performance gap between the simple prototype in OCaml
and an efficient implementation, we propose using Adap-
ton, a language-based technique for incremental computa-
tion [2, 3]. Under the hood, Adapton employs memoization
and dependency graphs to record past computations and se-
lectively reuse their results. We plan to use Adapton’s notion
of memoization to improve the efficiency of repeatedly re-
processing the command history, and searching for cursors
within the editor’s content. With this approach, we aim to
achieve the O(log |A|) response time mentioned above.

However, applying memoization is not automatic. It re-
quires semantics-preserving transformations that alter data
structures (changing linked lists into trees) and the structure
of recursive operations (changing tail recursion into recur-
sion over balanced trees) [2]. We are in the process of apply-
ing these transformations now; we expect preliminary results
in the coming weeks.

References
[1] Michael Abbott, Thorsten Altenkirch, Conor McBride, and

Neil Ghani. D for data: Differentiating data structures. Fun-
dam. Inf., 65(1-2):1–28, 2004.

[2] Matthew A. Hammer, Joshua Dunfield, Kyle Headley, Nicholas
Labich, Jeffrey S. Foster, Michael Hicks, and David Van Horn.
Incremental computation with names. In OOPSLA, 2015.

[3] Matthew A. Hammer, Yit Phang Khoo, Michael Hicks, and Jef-
frey S. Foster. Adapton: Composable, demand-driven incre-
mental computation. In PLDI, 2014.

[4] Gérard Huet. The zipper. Journal of Functional Programming,
1997.

[5] Neelakantan R. Krishnaswami. Higher-order reactive program-
ming without spacetime leaks. In International Conference on
Functional Programming (ICFP), September 2013.

[6] Norman Ramsey and João Dias. An applicative control-flow
graph based on Huet’s zipper. Electron. Notes Theor. Comput.
Sci., 148(2):105–126, 2006.

https://github.com/cuplv/icedit-calc

