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Abstract
Today’s interactive software is complex to write and read.
Arguably, much of this complexity stems from callback-
based programming models, which in turn rely on global
state with complex, global invariants. In this paper, we pro-
pose an alternative approach, the “Please Repeat Yourself”
(PRY) methodology for designing and implementing inter-
active software. PRY first encourages programmers to de-
compose interactive behavior into pure functions that, at
each instant in time, compute the system’s current output by
processing the system’s entire input history. After this sim-
ple (but naı̈ve) design, the methodology refines the prototype
with techniques for general-purpose incremental computa-
tion (IC), resulting in a responsive implementation.

As a proof of concept of PRY, we present IC-Edit, a prim-
itive text editor with basic end-user editing features. The
features of IC-Edit consist of cursor-local edits, non-local
navigation, and a global undo/redo buffer. In the context of
IC-Edit, we demonstrate that the PRY methodology leads to
both a simple model, as well as a responsive implementa-
tion. In particular, our experimental evaluation shows that
IC-Edit responds on average in under 8ms. In general, its re-
sponse time is sublinear in the total number of user actions,
whereas a naı̈ve implementation of its model has quadratic
response time. IC-Edit achieves this asymptotic improve-
ment by employing novel data structures and algorithms for
incrementally-edited sequences; these contributions general-
ize list zippers with efficient random access.

1. Introduction
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Software that interacts with users is complex
to specify and implement because these sys-
tems store state that persists and evolves in
time. The left figure illustrates the prototypi-
cal behavior B of an interactive system at the

highest level of abstraction. At successive instances in time,
the system receives new input from the user or environment
(in), produces new output (out), and feeds its state back to
itself for future interactions (state). The complexity of inter-
active systems arises as they strive to implement responsive
behavior that quickly computes the latest output from the lat-

est input and state. In particular, responsiveness comes at the
price of complex representations of, and invariants about, the
system’s state.

In this paper, we propose a radical alternative to the
current design methodologies for building interactive sys-
tems; we refer to this as the “Please Repeat Yourself” (PRY)
methodology. The first phase of PRY seeks a simple system
model by making two non-traditional design choices, de-
picted below. The first design choice decomposes an inter-
active system’s behavior, separating its state updates from a
purely-functional computation maps the current state to the
output (viz., update vs compute below). The second de-
sign choice selects the simplest possible definition of system
state: the history of all user inputs. Consequently, updat-
ing the system’s state merely consists of using Cons, which
prepends the current input to the list of prior inputs:

1. Decompose behavior 2. Define update := Cons

behavior(in, st) =

st’ ← update(in, st);

(compute(st’), st’)

behavior(in, st) =

st’ ← Cons(in, st);

(compute(st’), st’)

This definition of system state is justified by the desire for
simplicity, and the desire to interact with users, where sys-
tems commonly offer “undo” and “redo” actions. In these
contexts, maintaining a history of past inputs, perhaps up to
some limited threshold, is a necessity. Though some systems
impose a threshold on the length of this history for practical
reasons, we assume throughout this paper that the goal is
to offer unlimited user-controlled backtracking; future work
should explore how more nuanced trade-offs affect the pro-
posed approach. In sum, PRY encourages system designs
where the complexity of the system state is as low as possi-
ble (viz., the history of all past inputs), and where the burden
for responsive interaction rests on a clever, purely-functional
implementation of compute, which transforms the full input
history to the current output.

Based on the simple model from the first phase, the sec-
ond phase of PRY seeks a responsive system model. We
observe that, by definition, compute performs redundant
work for each state update. Consequently, by expressing
compute as a purely-functional algorithm, we can system-



atically exploit this redundancy via general-purpose tech-
niques for incremental computation (IC), including memo-
ization, aka function caching (Pugh and Teitelbaum 1989;
Acar et al. 2003; Hammer et al. 2014, 2015a). In gen-
eral, IC offers the promise of extracting responsive change
aware behavior from simple change oblivious algorithms.
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In the context of PRY, IC techniques
exploit the similarity in states between
one time instant and the next, as de-
picted in the left figure. As the user in-
teracts with the system, its successive
states st1 and st2 accumulate inputs
over user interaction time, shown hor-

izontally. Meanwhile, at each point during this interaction,
the compute algorithm (shown vertically) produces similar
outputs, out1 and out2. By expressing compute as a purely-
functional program, it can exploit IC techniques that work
behind the scenes to relate the old work to the new work,
and avoid recomputing redundant sub-computations.
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Furthermore, unlike popular im-
perative, event-based frameworks for
building interactive systems, IC allows
programmers to decompose compute

into sub-computations (shown as C1
and C2) using ordinary function com-
position. Behind the scenes, IC com-

poses the incremental behavior of these functions in a sys-
tematic way. Hence, using IC for compute promotes greater
compositionality, without sacrificing performance.

This paper demonstrates the PRY method applied to mod-
eling and implementing IC-Edit, a simple and responsive
text editor. First, we present a simple model for defining
the IC-Edit’s behavior in terms of a simple formal seman-
tics (Section 3). This simple model exhibits the principles
of the PRY paradigm: It decomposes conceptually-distinct
steps of the behavior’s input-to-output pipeline into separate
relations, and it decomposes the behavior of the features into
separate inference rules, one (or two) per feature.

Based on this formal semantics, a functional programmer
can readily implement these relations as pure functions; we
implemented them in both OCaml and Rust (Section 5). In
particular, these implementations’ designs are independent
of any underlying framework design for interaction, and they
use neither event-driven callbacks nor global state. Like the
formal semantics, they use purely-functional data structures
and algorithms, representing editable sequences with the list
zipper pattern, a well-known “functional pearl” (Huet 1997).

Based on this simple model, we develop a responsive
model for IC-Edit that improves its performance while pre-
serving both its input-output behavior and compositional de-
sign. In particular, we overcome the performance issues of
the simple model by employing general-purpose IC to cache
and reuse its work over time. In addition, we enhance its
zipper-based representation of editable sequences by intro-

ducing the random access zipper. The random-access zipper
is a novel data structure that supplements traditional zippers
with efficient random-access refocusing. Though we intro-
duce it here to implement IC-Edit via the PRY methodology,
it is general enough to be of independent interest (Section 4).
Likewise, we implement the Adapton approach for general-
purpose IC as a new Rust library, and enhance existing tech-
niques with several new optimizations (Section 5).

We empirically evaluate the simple and responsive imple-
mentations of IC-Edit, as well as the proposed IC optimiza-
tions (Section 6). Overall, we find that the performance of
the simple implementation of IC-Edit degrades over time, as
the number of prior user actions grows (viz., the size of the
state increases). Under a light workload that consists only
of local edits and which eschews non-local navigation, the
simple implementation exhibits response time that is linear
in the length of its action history; under a heavy workload
that interleaves edits at randomized positions, its response
time is quadractic in the length of its action history. By con-
trast, under both workloads the responsive implementation
exhibits near-constant response times. After about two thou-
sand actions, it outperforms the simple implementation; at
200k actions, its average response time is still only 8ms.

Following our emprical evaluation, we review related
work (Section 7). As we discuss there, we are certainly not
the first researchers to propose new methodologies for pro-
gramming interactive systems. In particular, functional reac-
tive programming (FRP) is similar in its promotion of com-
positional design within existing languages for functional
programming. As we discuss in Section 7, PRY is distinct in
its promotion of a radically simple definition of state as “full
input history” whereas FRP is more permissive, allowing
systems with more complex definitions of reactive state. In
sum, we view FRP as orthogonal (and perhaps complemen-
tary) to the proposed PRY methodology.

2. Overview
In this section, we present an overview of applying the PRY
methodology to the design and implementation of IC-Edit.
We demonstrate an example of interacting with IC-Edit,
which informally illustrates how its compute behavior de-
termines its output from a history of user input actions. We
sketch the simple model of IC-Edit, in terms of a formal
semantics and corresponding naı̈ve implementation. To ad-
dress the practical limitations of the simple model, the re-
sponsive model uses IC techniques and the random access
zipper. We illustrate this data structure with an example.

An Example of Interacting with IC-Edit. Figure 1 lists
nine input actions (left column), and the ten symbol se-
quences before and after IC-Edit processes each action (right
column). The initial sequence consists of the symbol “z”
and “y”, an active cursor γ, the symbol “c”, an inactive
cursor α (circled to emphasize its inactivity), and the sym-
bols “d”, and “e”. The first action overwrites the “y” symbol



Action Symbol sequence
initial z y γ c α d e

1 ovr L b z γ b c α d e

2 undo z y γ c α d e

3 redo z γ b c α d e

4 rem L γ b c α d e

5 ins a L a γ b c α d e

6 move L γ a b c α d e

7 join α a b c α d e

8 make β a b c
β α d e

9 goto 0 α a b c
β
d e

Figure 1: An example of interacting with IC-Edit

to the left of the cursor, changing it to a “b” and moving left.
The second action is undo, which recovers the initial sym-
bol sequence. Following this undo, the third action is redo,
which re-performs the first overwrite action (viz., ovr L b).

Next, actions 4–6 consist of local edits: The forth action
removes the “z” symbol to the left of the cursor; this removal
action is followed by a left insertion of symbol “a”. The
sixth action moves the active cursor one text symbol to the
left without altering the symbol sequence.

Finally, actions 7–9 demonstrate non-local cursor com-
mands. Action 7 is an example of a cursor join, which elim-
inates the active cursor from the symbol sequenced (cur-
rently γ), and activates the specified cursor, in this case α.
Action 8 creates a new cursor β immediately to the left of
the current position. Finally, action 9 consists of a goto com-
mand, specifying that the active cursor move immediately
to the left of symbol position 0, the leftmost position in the
sequence.

2.1 PRY Design Phase 1: Simple Model of IC-Edit
The left fragment of Figure 2 illustrates the first phase of ap-
plying PRY to the design of IC-Edit. In particular, it yields
the simple model of IC-Edit’s compute behavior in terms
of a two-stage pipeline. The first stage processes input ac-
tions A by evaluating undo and redo actions; it produces
a residual sequence of (non-undo, non-redo) editing com-
mands C. The second stage processes the command se-
quence C, producing a focused sequence of output symbols,
represented as a symbol zipper Z.

Recalling the example from Figure 1, the full sequence
of actions A consists of the left column (viz., actions 1–9),
prepended with an initial action sequenceA0 that determines
the initial symbol sequence shown in the first row. After the
first stage, the redo of action 3 cancels the undo of action 2,
and the residual command sequence C includes of all the re-
maining commands shown, viz., action 1 followed by 4–9

(and prepended with residual commands from A0 that pro-
duce the first row). Lastly, the focused symbol sequence Z

matches that of the final row, after action 9: α a b c
β
d e.

The following judgement makes this pipeline precise:

A ⇓ 〈C1 || C2〉
γ fresh 〈ε || γ || ε〉 ` rev(C1) ⇓ Z

A ⇓ Z IC-Edit/Pipeline

The single-rule judgement A ⇓ Z relates the full history
of input actions A with the current focused symbol se-
quence, represented as zipper Z. The rule consists of three
premises. The first premise, γ fresh, merely chooses an ar-
bitrary cursor γ not mentioned in action sequence A; it acts
as the initial “default” cursor. The next premise uses the
first stage’s formal semantics to derive a residual sequence
of commands C1. Additionally, it yields a residual undo
buffer C2, which the rule discards. Beginning with the ini-
tial cursor γ and an empty symbol zipper, the final premise
uses the second stage’s formal semantics to derive symbol
zipper Z from the residual commands sequence C1. This
premise reverses these commands because the first premise
produces them in reverse order, for technical convenience.

Section 3 gives the complete formal semantics of IC-
Edit, which consists of five judgement forms and 26 infer-
ence rules. Compared with an imperative prototype based
on events and callbacks, this model is simple because it de-
couples the semantics of undo and redo actions from the
commands that those actions determine, and it models each
of the two decoupled stages with a simple set of declar-
ative inference rules. When implemented naı̈vely, the key
drawback of this semantics is its performance. In particular,
this simple model exhibits two performance-related issues:
First, for each new input action, its two stages repeatedly
process (nearly) the same sequences of actions and com-
mands. Second, for commands involving non-local cursor
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Figure 2: IC-Edit’s system design consists of two phases.



movement (e.g., goto and join, shown above), a naı̈ve im-
plementation of this model uses linear search, which does
not efficiently scale as the symbol sequence grows.

2.2 PRY Design Phase 2: Responsive Model of IC-Edit
The right fragment of Figure 2 illustrates the second phase of
applying PRY to the design of IC-Edit. In particular, by re-
fining the two-stage pipeline of the simple model to address
the performance issues discussed above, it yields the respon-
sive model of IC-Edit’s compute behavior. In Stage 1(a),
the responsive model builds a probabilistically-balanced tree
consisting of the input action sequence A; in Stage 1(b), the
responsive model folds over this tree, producing the resid-
ual command sequence C. By combining general-purpose
IC techniques with this balanced tree, Stage 1 avoids the re-
dundant work of reprocessing nearly identitical action se-
quences (Hammer et al. 2014, 2015a).

In Stage 2(a), the responsive model mirrors Stage 1(a),
building a balanced tree consisting of the command se-
quence C. Next, mirroring the Stage 1(b), Stage 2(b) folds
this tree, producing the final output, the symbol zipper Z. As
with Stage 1, the presence of IC and the balanced tree allow
Stage 2 to avoid redundant work over time. However, unlike
in Stage 1(b), this last stage requires extra care; in particular,
evaluating commands that navigate the active cursor non-
locally (e.g., join and goto) are each inefficient in the simple
model. To address this issue, Stage 2(b) employs a new data
structure and associated algorithms, which we collectively
refer to as the random access zipper. At a high level, this
purely-functional structure provides logarithmic operations
to focus and unfocus the symbol zipper, even when succes-
sive focal points are chosen at random.

Editing Sequences via the Random Access Zipper (RAZ).
Figure 3 (first image) shows the final symbol sequence from
Figure 1, interposed with names, shown as numerals 1–6.
The two cursors from this sequence, α and β, are circled,
indicating that they are inactive. In the example that follows,
we process three commands: switch to cursor β, remove the
text symbol to the left of cursor β (viz., text symbol c), and
switch to cursor α.

First, before making cursor β active, we represent the un-
focused sequence as a probabilistically-balanced tree, shown
in the second image of Figure 3. To construct this tree, we
associate each sequence element (cursor, text or name) with
a level, where levels determine these elements’ height in the
tree. The levels of cursors and text symbols are zero, indicat-
ing that they are the leaves of the tree; we assign the levels of
names probabilistically using a negative binomial distribu-
tion, which yields a balanced tree, in expectation.1 The third
image in Figure 3 shows the zipper that results from focusing
the sequence on cursor β. As can be seen, this structure con-
sists of left and right lists that each contain names and unfo-

1 We implement this choice with hashes, similar to Hammer et al. (2015a),
where we count the consecutive zeros in the LSBs of the hash value.

Sequence of cursors, names, and data, with tree level:

0 0 0 0000 21 54 36
21 543 6a b c d eα βSeq:

Level:
As a tree, names are internal and levels determine heights:

2

1

a

b

ed

c

3

4

6

5

α

β
Focus Path
Tree
List

Zipper focused on cursor β. Three (unfocused) sub-trees remain:

1
aα

Nil 2

b c
3 4 β 5 Nil

d e
6

Figure 3: The sequence of symbols and cursors are interposed with
names 1–6 (first image); the levels of these names uniquely determine a
balanced tree (second image) that permits log-time focusing on cursor β
(third image).

Remove name 4, to the left of cursor β

Nil 2

b c
3 β 5 Nil

d e
61

aα

Trim the tree left of cursor β, deconstructing its rightmost path.

Nil 2
b c3 β 5 Nil

d e
61

aα

Remove text symbol c

Nil 2
b 3 β 5 Nil

d e
61

aα

Figure 4: An example of editing a focused zipper: Remove the text
symbol c to the left of active cursor β by removing the name 4 (first image),
trimming the left tree (second image) and removing symbol c (third image).

cused subtrees from the original balanced tree. (The diagram
distinguishes tree and list pointers with distinct arrowheads).
The focusing algorithm produces this zipper by descending
the balanced tree along the indicated focus path (second im-
age of Figure 3), adding names and subtrees along this path
to the left and right lists. Notice that the elements nearest to
cursor β consist of the subtrees at the end of this path; in
expectation, these lists order subtrees in ascending size.

Figure 4 shows the three steps for removing the text
symbol c to the left of active cursor β; the initial state of this
sequence is the final state from Figure 3. First, we remove
the name 4 from the left of the active cursor β, making c the
next element to the immediate left of the active cursor β (the



top figure). Next, since the text symbol c resides as a leaf in
an unfocused tree, we trim this left tree by deconstructing its
rightmost path (viz., the path to c). Finally, with symbol c
exposed in the left list, we remove it (third image).

Beginning with the final state of Figure 4 and active
cursor β, Figure 5 illustrates the process of unfocusing the
sequence, and then refocusing on cursor α. First, we add
active cursor β to the left list, storing its position in the
sequence (second image). Next, we build trees from the left
and right lists as follows: For each list, we fold its elements
and trees, appending them into balanced trees; as with the
initial tree, we use the levels of names to determine the
height of internal nodes (third image). Having created two
balanced trees from the left and right lists, we append them
along their rightmost and leftmost paths, respectively; again,
the append path compares the levels of names to determine
the final appended tree (forth image). Finally, as in Figure 3,
we descend the focus path to the desired cursor, this time
cursor α. As before, this path induces left and right lists that
consist of names and unfocused subtree (fifth image).

3. The Formal semantics of IC-Edit
In this section, we present a simple and complete formal se-
mantics for IC-Edit. In particular, we formalizes a precise
language semantics for end-user editing of sequential data;
though we think of the atoms of these sequences as text sym-
bols, this design easily generalizes to arbitrary sequential
data. The language semantics we present underpins both the
simple and responsive implementations of IC-Edit.

The formal language of IC-Edit centers on imperative
commands that modify the text buffer and manage the pool
of available cursors. Formally, a user action a consists of an
editing command c, or the actions that undo and re-do past
commands (undo and redo):

Action a ::= cmd c | undo | redo
Command c ::= ins d t | rm d | ovr d t | mv d | goto n

| mk α | sw α | jmp α | join α
Direction d ::= L | R

Specifically, an editing command c consists of inserting,
removing, or overwriting text symbols (ins, rm, ovr); moving
the active cursor within the text (mv and goto); making
new cursors (mk); and moving among existing cursors by
switching between, jumping to, or joining with them (sw,
jmp, join). We use d to range over two possible directions
(viz., left L and right R), t to range over an unspecified set
of text symbols, and α to range over an unspecified set of
cursor symbols.

At each state during user interaction, the semantics mod-
els the text buffer as a symbol sequence S consisting of cur-
sor and textual symbols. The semantics of commands distin-
guishes a special active cursor, which in turn induces a sym-
bol zipper 〈S1 || α || S2〉 that consists of symbol sequences to
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d e
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Nil 2
b 3 5 Nilβ
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Figure 5: Switch from cursor β to α by unfocusing and refocusing.

the left (S1) and right (S2) of the active cursor α:

Symbol sequence S ::= ε | S :: t | S :: α
Symbol zipper Z ::= 〈S1 || α || S2〉

Command sequence C ::= ε | C :: c |

Using these structures, Figures 6 and 7 give zipper-trans-
forming semantics for single commands c and command se-
quences C, respectively, by defining the judgement forms
Z1 ` c −→ Z2 and Z1 ` C ⇓ Z2. The first judgement
is read as “the command c transforms initial zipper Z1 into
final zipper Z2”, and the second is read similarly: “the com-
mand sequence C transforms initial zipper Z1 into final zip-
per Z2”. These semantics are directly inspired by the zipper
pattern, which provides a general approach for describing
purely functional data structures that undergo small changes.
First proposed for n-ary trees by Huet, the zipper pattern has



Z1 ` C ⇓ Z2 Under Z1, performing commands C yields Z2

Z ` ε ⇓ Z Cs nil
Z1 ` c −→ Z2 Z2 ` C ⇓ Z3

Z1 ` c :: C ⇓ Z3 Cs cons

Figure 6: Stage 2 of Pipeline: Commands to Symbols.

Z1 ` c −→ Z2 Under Z1, command c yields zipper Z2

〈S1 || α || S2〉 ` ins t L −→ 〈S1 :: t || α || S2〉
C insertL1

〈S1 || α || S2〉 ` ins t L −→ 〈
S ′
1 || α || S ′

2

〉
〈S1 :: β || α || S2〉 ` ins t L −→ 〈

S ′
1 :: β || α || S ′

2

〉 C insertL2

rev(Z) ` ins t L −→ rev(Z ′)

Z ` ins t R −→ Z ′ C insertR

〈S1 :: t || α || S2〉 ` rm L −→ 〈S1 || α || S2〉
C removeL1

〈S1 || α || S2〉 ` rm L −→ 〈
S ′
1 || α || S ′

2

〉
〈S1 :: β || α || S2〉 ` rm L −→ 〈

S ′
1 :: β || α || S ′

2

〉 C removeL2

rev(Z) ` rm L −→ rev(Z ′)

Z ` rm R −→ Z ′ C removeR

〈S1 :: t || α || S2〉 ` mv L −→ 〈S1 || α || t :: S2〉
C moveL1

〈S1 || α || β :: S2〉 ` mv L −→ Z

〈S1 :: β || α || S2〉 ` mv L −→ Z
C moveL2

rev(Z) ` mv L −→ rev(Z ′)

Z ` mv R −→ Z ′ C moveR

Z1 ` rm L −→ Z2 Z2 ` ins t R −→ Z3

Z1 ` ovr t L −→ Z3
C overwriteL

Z1 ` rm R −→ Z2 Z2 ` ins t L −→ Z3

Z1 ` ovr t R −→ Z3
C overwriteR

γ fresh 〈S1 :: α || γ || S2〉↔ 〈
S ′
1 :: β || γ || S ′

2

〉
〈S1 || α || S2〉 ` sw β −→ 〈

S ′
1 || β || S ′

2

〉 C switchto

〈S1 || α || S2〉↔ 〈
S ′
1 :: β || α || S ′

2

〉
〈S1 || α || S2〉 ` jmp β −→ 〈

S ′
1 :: β || α || S ′

2

〉 C jumpto

〈S1 || α || S2〉↔ 〈
S ′
1 :: β || α || S ′

2

〉
〈S1 || α || S2〉 ` join β −→ 〈

S ′
1 || β || S ′

2

〉 C join

〈S1 || α || S2〉↔ 〈
S ′
1 || α || S ′

2

〉
|S ′
1|text = n

〈S1 || α || S2〉 ` goto n −→ 〈
S ′
1 || α || S ′

2

〉 C goto

〈S1 || α || S2〉 ` mk β −→ 〈S1 :: β || α || S2〉
C mk

Figure 7: Semantics of IC-Edit’s commands.

Z1 ↔ Z2 Zipper Z1 refocuses to Z2 in zero or more steps.

Z↔ Z
Refl

〈S1 || α || s :: S2〉↔ Z

〈S1 :: s || α || S2〉↔ Z
L

〈S1 :: s || α || S2〉↔ Z

〈S1 || α || s :: S2〉↔ Z
R

Figure 8: Non-determinisitic refocusing of symbol cursor.

since been adapted and generalized extensively (Huet 1997;
Abbott et al. 2004; Ramsey and Dias 2006).

The C insertL1 rule gives a prototypical example of local
editing with a zipper. The command inserts the text symbol t
to the left of the active cursor; in the righthand side, the
left symbol sequence S1 is merely extended with t, while
the right sequence S2 remains unchanged. In this rule, and
below, we use “snoc” notation for sequences that grow from
left to right, viz., we write S :: t instead of the more common
“cons” notation t :: S; this is merely a notational convention
to increase readability in the rules.

The C insertL2 rule addresses the case when the symbol
immediately to the left of the active cursor is not textual, but
instead is another (inactive) cursor β. We first experimented
with a semantics where this case was not distinguished, but
we found that it lead to somewhat unintuitive behavior—
amongst a group of consecutive cursors, the active cursor
would insert text between it and the adjacent (inactive) cur-
sors. By contrast, the design of the C insertL2 rule inserts
text to the left of any cursors that are immediately adjacent
to the active cursor. Finally, C insertR mirrors the left-acting
insertion rules by using an auxiliary function on symbol zip-
pers rev; this function merely exchanges the left and right
symbol sequences of the zipper; i.e., rev(〈S1 || α || S2〉) =
〈S2 || α || S1〉. The rules for removal and local movement
(rm and mv) employ patterns that are analogous to those of
the ins command. Finally, the rules for the overwrite com-
mand (ovr) pair a removal with an insertion.

Unike the local editing commands, the non-local editing
commands each manipulate the placement of the active cur-
sor in a non-local fashion. As an example, the C join rule
gives the semantics of the join command. The rule uses a sin-
gle premise that non-deterministically refocuses near the tar-
get cursor β. In general, we read Z1 ↔ Z2 as “symbol zip-
per Z1 refocuses to Z2”; the general rules for this refocusing
judgement are given in Figure 8. The judgement preserves
the order of symbols in the zipper, but non-deterministically
moves the focus to another position in the sequence of sym-
bols. In the conclusion of the C join rule, the original active
cursor α is eliminated, and replaced with the target cursor β.
The other cursor movement rules (viz., switch, jump and
goto) each use the refocusing judgement in their premises.

Evaluating undo and redo actions. Before evaluating a
residual sequence of commands C, the first stage of IC-
Edit’s compute pipeline evaluates undo and redo actions. We
formalize this aspect of editing by employing a zipper for



A ⇓ ZC Evaluating actions A yields command zipper ZC

ε ⇓ 〈ε || ε〉 A nil
A ⇓ 〈C1 :: c || C2〉

A :: undo ⇓ 〈C1 || c :: C2〉 A undo

A ⇓ 〈C1 || c :: C2〉
A :: redo ⇓ 〈C1 :: c || C2〉

A redo
A ⇓ 〈C1 || C2〉

A :: cmd c ⇓ 〈C1 :: c || ε〉
A cmd

Figure 9: Stage 1 of Pipeline: Actions to Commands.

command sequences: ZC ::= 〈C1 || C2〉. Figure 9 defines the
judgementA ⇓ ZC, which formalizes the semantics of eval-
uating an action sequence A to produce a residual command
sequence C1 and undo buffer C2. We read this judgement as
“performing action sequenceA yields command history C1,
and undo buffer C2.” In particular, the EA undo rule evalu-
ates an undo action by moving the last command c from the
command sequence to the undo buffer, and the EA redo rule
does the reverse. Notably, the EA cmd rule evaluates a com-
mand by appending it to the residual command sequence,
and by clearing the resulting undo buffer. This semantics
faithfully matches that of the vast majority of interactive ap-
plications with undo features. For example, it is common in
end-user software for the two sequences of actions to result
in the same state:

Sequence 1 : cmd c1, cmd c2, undo, cmd c3, redo
Sequence 2 : cmd c1, cmd c3

In particular, while the undo in the first sequence undoes
command c2, the final redo in this sequence has no effect:
The preceeding command c3 clears the undo buffer before it
can redo the undone command c2.

Performance challenges in simple model. The simple
model described above has two key performance challenges,
which each stem from the simplicity of its semantics, and its
adherence to the PRY methodology.

First, for each new user action, the simple model fully
repeats the two pipeline phases described above. Repeating
phase one consists of recomputing the reversed command
buffer rev(C1) for the entire history of user actions A. Re-
peating phase two consists of recomputing the final sym-
bol zipper Z2 for the entire sequence of commands in this
buffer, rev(C1). The responsive model overcomes this first
challenge without changing the approach conceptually; in-
stead, it employs incremental computation to avoid perform-
ing any redundant prefixes of these two phases.

Next, in addition to being repetitive, the second phase of
the simple model’s pipeline evaluates commands that require
zipper refocusing by using a naı̈ve search strategy (e.g., a lin-
ear search implementation of judgement Z1 ↔ Z2), rather
than use a more efficient approach with greater complexity.
Again, the responsive model overcomes this second chal-
lenge without changing the approach conceptually: It still
uses a zipper-based representation for the symbol sequence.

However, to support randomized access, it enhances this rep-
resentation with additional structure that permits efficient
(log-time) unfocusing and focusing operations.

4. Random Access Zipper
The Random Access Zipper (RAZ) is critical to IC-Edit’s
responsive implementation. Unlike a traditional list zipper
(e.g., those in Section 3), a RAZ efficiently supports non-
local movement in addition to simple local edits at its current
focal position. In this sense, the RAZ offers the combined
benefits of ordinary list zippers and purely-functional arrays.

As an example, consider the following loop of edits:
let rec loop edits seq = match edits with

| [] → seq

| (pos, edit) :: edits →
let z1 = focus seq pos in O(log |seq|)
let z2 = do_edit edit z1 in O(1)

let s2 = unfocus z2 in O(log2 |seq|)
loop edits s2

The loop processes a list of edits, whose interpretation is
given by a zipper-transforming function do_edit with type:
do_edit : edit → zipper → zipper

This function assumes that the zipper is focused on the
desired position of the edit, pos in the code above. Though
not specified above, the representation of pos may either be
a global offset (such as a line number or character count), or
a symbolic, unique cursor identity, as introduced in earlier
sections of this paper.

To focus and unfocus the RAZ sequence, the loop uses
the two RAZ operations focus and unfocus, respectively.
As illustrated in the example of Section 2.2, the focus

operation transforms the sequence from a canonical, prob-
abilistically-balanced tree to a list of trees, whose represen-
tation admits local editing, a la traditional list zippers. Af-
ter one or more local edits, the unfocus operation inverts
this step, recovering an edited balanced tree. Section 2.2 de-
picts an example of using these operations, and in this sec-
tion, we present a general approach in the form of com-
plete code listings and performance bounds. In particular,
we show that focus and unfocus operations used above
each run in sublinear time, viz., O(log(·)) and O(log2(·))
time, respectively. As a result, the loop above runs in time
O(|edits| log2(|edits|+ |seq|)).

The zipper datatype captures the RAZ’s structure:
type ’a tree = Nil | Leaf of ’a

| Bin of name option * ’a tree * ’a tree

type ’a tlist = Nil | Cons of ’a * ’a tlist

| Name of name * ’a tlist

| Tree of ’a tree * ’a tlist

type ’a zipper = ’a tlist * ’a tlist

This structure is stratified into three types: the tree type
consists of (unfocused) binary trees, where leaves hold data
and internal binary nodes hold an optional unique name;
the tlist type consists of ordinary list structure, plus two



let focus : cur → sym tree → (sym zipper) option

= fun cur → let rec loop

: sym tree → sym zipper → (sym zipper) option

= fun tree z → match tree with

| Nil → None

| Leaf(l) → if l = Cur(cur) then Some(z)

else None

| Bin(n, l, r) →
if find cur (tree_info l).curs

then loop l (insert_tree n r R z)

else if find cur (tree_info r).curs

then loop r (insert_tree n l L z)

else None

in fun tree → loop tree (Nil, Nil)

Figure 10: Focus a tree on a cursor cur, creating a zipper

let unfocus : ’a zipper → ’a tree =

fun (left, right) →
let ltree = grow L (next_tree left ) in

let rtree = grow R (next_tree right) in

append ltree rtree

Figure 11: Unfocus a zipper, creating a tree

Cons-like constructors that hold names and trees instead of
ordinary data; finally, a (focused) zipper consists of a left
and right tlist.

Focusing the random-access zipper. The focus operation
in Figure 10 transforms an unfocused tree to a focused zip-
per. Given a cursor cur symbol, a unique position in the
tree, and an O(1)-time find operation on sub-trees, the in-
ner loop recursively walks through one path of Bin nodes
until it finds the desired Leaf symbol. At each step of this
walk, the insert_tree operation accumulates un-walked
subtrees in the zipper z; in the base case, focus returns this
accumulated z. The walk is guided by find, which indi-
cates which subtree contains the desired cursor symbol. In
Section 5, we use the memoization afforded by IC to imple-
ment find in expected constant time; when IC is absent, one
can augment the Bin case of the tree type with satellite in-
formation to provide efficient indexing, viz., either the size
of the subtree, or a (O(1)-sized) set of cursors in the subtree,
or both. Under the following conditions, focus is efficient,
running in logarithmic time for balanced trees:
Proposition 4.1. Given a tree t of depth d, and an O(1)-
time implementation of find, the operation focus cur t

runs in O(d) time.

Unfocusing the random-access zipper. The unfocus op-
eration in Figure 11 transforms a focused zipper to an un-
focused tree. It uses auxiliary operation grow to construct
trees for the left and right tlist sequences that com-
prise the focused RAZ. The first call to grow and its recur-
sive computation each use next_tree to extract successive
trees from a given tlist. The final step of unfocus con-

let next_tree : ’a tlist → (’a tree * ’a tlist)

= fun tlist → match tlist with

| Nil → (Nil, Nil)

| Cons(s,r) → (Leaf(s),r)

| Tree(t,r) → (t,r)

| Name(n,r) → (Bin(Some(n),Nil,Nil),r)

Figure 12: From a tlist, get the next structure as a tree

let grow : dir → (’a tree * ’a tlist) → ’a tree

= fun dir →
let append’ : ’a tree → ’a tree → ’a tree =

match dir with

| L → fun t1 t2 → append t1 t2

| R → fun t1 t2 → append t2 t1

in

let rec loop (t1, rest) =

if rest = Nil then t1 else

let (t2, rest) = next_tree rest in

loop (append’ t1 t2, rest)

in loop

Figure 13: Grow a single balanced tree from a tlist

sists of appending the left and right trees, ltree and rtree,
respectively. Under the conditions stated below, unfocus is
efficient, running in polylogarithmic time for balanced trees
with logarithmic depth:
Proposition 4.2. Given a tree t of depth d, peforming
unfocus (unwrap (focus t cur)) requires O(d) time.

We sketch the reasoning for this claim, deferring details
about the auxiliary functions grow and next_tree to the
discussion below. As stated above, the operation focus t cur

runs in O(d) time; we further observe that focus produces
a zipper with left and right lists of length O(d). Assuming
cur is present, the unwrap operation eliminates the option
type in constant time (and raises an exception otherwise).
Likewise, next_tree also runs in constant time. Next, the
unfocus operation uses grow to produce left and right trees
in O(d) time. In general, grow makes d calls to append,
combining trees of height approaching d, requiring O(d2)
time. However, since these trees were placed in order by
focus, each append here only takes constant time. Finally,
it appends these trees inO(d) time. None these steps domi-
nate asymptotically, so the composed operations run inO(d)
time.

Iterating, growing and appending trees. The unfocus

operation above consists of calls to the auxiliary operations
next_tree, grow, and append. Figure 12 lists next_tree,
which transforms a tlist to a pair consisting of a tree

and a residual tlist; conceptually, it extracts the next tree,
leaf data or binary node name as tree structure. In turn,
the grow operation in Figure 13 loops over successive trees,



let rec append : ’a tree → ’a tree → ’a tree =

fun t1 t2 → match t1, t2 with

| Nil, _ → t2 | _, Nil → t1

| Leaf(_), Leaf(_) → Bin(None, t1, t2)

| Leaf(_), Bin(n,l,r) → Bin(n, append t1 l, r)

| Bin(n,l,r), Leaf(_) → Bin(n, l, append r t2)

| Bin(n1,t1l,t1r), Bin(n2,t2l,t2r) →
if level n1 > level n2

then Bin(n1, t1l, append t1r t2)

else Bin(n2, append t1 t2l, t2r)

Figure 14: Append sequences represented as balanced trees

each extracted by next_tree, and it accumulates them in
a loop, combining them with append. The dir parameter
determines whether the accumulated tree grows from left-
to-right (L case), or right-to-left (R case); the internal func-
tion append’ specializes the general append operation to
this choice. When the tlist is Nil, the loop within grow

completes, and yeilds the accumulated tree t1.
The append operation in Figure 14 produces a tree whose

leaves and internal names consist of the leaves and names
of the two input trees, in order. That is, an in-order traver-
sal of the tree result of append t1 t2 first visits the names
and leaves of tree t1, followed by the leaves and names of
tree t2. The algorithm works by traversing a path in each its
two tree arguments, and producing an appended tree with the
aforementioned in-order traversal property. In the Bin node
case, the computation chooses between descending into the
sub-structure of argument t1 or argument t2 by comparing
their names’ levels and by choosing the tree named with the
higher level. As depicted in the example in Figure 5 (from
Section 2.2), this choice preserves the property that Bin

nodes with higher levels remain higher in the resulting tree.
When these levels are chosen from a negative binomial dis-
tribution, this choice preserves the resulting tree’s balance,
in expectation. Below, we discuss further meta-properties of
this algorithm, and compare it to prior work.

Trimming an inner tree The trim operation in Figure 15
prepares a tlist for edits in the given direction dir. It re-
turns the tlist unchanged if it does not contain a tree. If the
tlist does contain a tree, trim deconstructs it recursively.
Each recursive call eliminates a Bin node, pushing the first
branch, name, and second branch into the tlist. The recur-
sion ends when trim reaches a Leaf and pushes it into the
tlist as a Cons.

The trim operation works most efficiently immediately
after a balanced tree is focused into a zipper. The cursor
will be surrounded by leaves or small subtrees, which can be
trimmed in constant time. If the cursor moves far through the
zipper, it can encounter a node from high in the original tree,
containing a significant proportion of the total data count.

These facts suggest the following propositions:

let trim : dir → ’a tlist → ’a tlist =

fun dir → let rec loop tlist = match tlist with

| Nil | Cons(_,_) | Name(_,_) → tlist

| Tree(tree, rest) →
match tree with

| Nil → rest

| Leaf(l) → Cons(l,rest)

| Bin(n,l,r) →
match dir, n with

| L, None → loop (Tree(l,Tree(r,rest)))

| R, None → loop (Tree(r,Tree(r,rest)))

| L, Some(n) → loop (Tree(l,Name(n,Tree(r,rest))))

| R, Some(n) → loop (Tree(r,Name(n,Tree(r,rest))))

in loop

Figure 15: Trim a tree, on direction dir, creating a tlist

Proposition 4.3. Given a direction d, a cursor c, a tree t of
size n, and a tlist l from one side of a zipper created by
focus t c, trim d l runs in O(1) time.
Proposition 4.4. Given a direction d, a cursor c, a tree t of
size n, and a tlist l from one side of a zipper created by
focus t c, a sequence of k calls to trim d l composed
with move d runs in O(k log n) time.

Discussion of tree balancing via append. The append al-
gorithm presented here is inspired by that of Pugh and Teitel-
baum (1989). A key difference is our introduction of names,
which address the case when the sequenced data elements
are indistinguishable (e.g., to represent a text buffer with a
single character repeated an arbitrary number of times). In
particular, prior work lacked names, and instead assumed
unique data elements determine a balanced tree.

As with Pugh and Teitelbaum’s algorithm, our version
of append is particularly well-suited to memoization via
IC, since it yeilds a canonical tree for a given resulting
sequence. In other words, append commutes with (ordinary)
sequence concatenation, and is associative:
Proposition 4.5. Given three trees t1, t2 and t3, if we
have that t = append (append t1 t2) t3 and t’ =
append t1 (append t2 t3), then t = t’.
In the next section, we use hash-consing to exploit this
fact, and avoid storing redundant copies of the same sub-
sequences. As discussed below, names serve a second role:
they act as cues to the IC technique of nominal memoization.

5. Implementation
We implement the simple and responsive models of IC-Edit,
including random access zippers. We also implement Adap-
ton in Rust, enhancing prior work with new optimizations.

5.1 Simple and Responsive implementations of IC-Edit
As prescribed by PRY, the first phase of IC-Edit design con-
sists of creating the formal semantics presented in Section 3,
and a simple, executable implementation of this semantics.
We create two such prototypes: One in OCaml, a language



that we know well, and later, one in Rust, a language that we
are still learning as developers. Our OCaml implementation
totals 400 lines of (commented/documented) code, which
consists of types and helper functions (∼80 lines), the for-
mal semantics itself (∼100 lines), random action generation
(∼45 lines), graphical display (∼75 lines) and translation of
system-level input events into IC-Edit’s language of user ac-
tions (∼100 lines).

Informed by this initial design and development experi-
ence, we created a second simple implementation in Rust to-
taling 1700 lines, with similar percentages of lines devoted
to the tasks of defining types, generating random actions,
interacting with system-level graphics and keyboard input.
Compared with OCaml, Rust generally consumed more lines
for the same conceptual step, even though the complexity of
this code is comparable to the OCaml equivalent; its a more
verbose language which which we are less familar. Never-
theless, the core aspects of the formal semantics only totaled
∼275 lines of Rust: Stage 1 consists of ∼35 lines, and Stage
2 consists of ∼240 lines; each are purely functional.

Finally, based on the simple implementation in Rust, we
created the responsive model and implementation in Rust.
To do so, we used implementations of Adapton and the RAZ,
each described below. Beyond these (general, reusable) com-
ponents, the remaining implementation of the responsive
model of IC-Edit consists of the stages illustrated in Sec-
tion 2: Stage 1(a) builds a probabilistically-balanced tree
using a single RAZ library call; Stage 1(b) folds over this
tree, producing the residual command sequence (∼40 lines);
Stage 2(a) builds a balanced tree of these commands with
a single call; Stage 2(b) folds this tree, producing the final
output, the symbol zipper (∼110 lines).

Finally, the responsive pipeline ends with graphics code
that is common to the responsive and simple implementa-
tions (∼200 lines). Likewise, both implementations share the
start of the pipline, which processes keyboard events from
the system (∼400 lines), and which generates random actions
for regression and performance tests (∼225 lines). In addi-
tion comparing the two implementations empirically (Sec-
tion 6), we used regression tests throughout our development
that validate the correctness of the responsive implementa-
tion against the input/output behavior of the simple version.

5.2 Random Access Zipper in Rust
In Section 4, we present the RAZ data structure and algo-
rithms as OCaml code listings. Their implementation in Rust
using the Adapton library (below) is straightforward. How-
ever, we note two critical details not captured in those list-
ings: First, we compute tree_info as a simple bottom-up
tree traversal that returns the size of each sub-tree and the list
of cursors that it contains. By memoizing this computation
with Adapton, we avoid manually maintaining this satellite
data, but still match the O(1)-time and -space performance of
doing so. Second, since Adapton requires O(1)-time opera-
tions that compare and hash data structures, we use Adapton

to hash-cons the trees of the RAZ; further, the sparse mem-
oization optimization mentioned below uses the presence or
absence of names in the RAZ sequence as cues to control the
granularity of this hash-consing.

5.3 Adapton in Rust, with Optimizations for PRY
We implement both Adapton (Hammer et al. 2014) and
Nominal Adapton (Hammer et al. 2015a) as a single uni-
fied library in the Rust programming language (Matsakis
and Klock II 2014). As in prior work, the key abstractions
that define this library interface are first-class name val-
ues, named cells that hold changing data, and named thunks
whose results the library caches and reuses. The original
work on Adapton used a “structural” approach for identi-
fying cells and thunks—i.e., it identified these structures
by their content, and it automatically hash-cons’d redun-
dant copies of cells and thunks. Subsequent work advanced
nominal matching as a way to systematically use names to
overwrite cached data and computations, which can often in-
crease incremental reuse and reduce space overhead. Com-
pared with these earlier prototypes (in OCaml), our Rust im-
plementation makes additional advances relevant to the ap-
plication of PRY to IC-Edit.

Mixed-use of Structural and Nominal Adapton. We ob-
serve that the IC-Edit compute pipeline illustrated in Sec-
tion 2 benefits from a mixture of nominal and structural
Adapton variants. More generally, our library offers sim-
ple annotations to mix structural and nominal computations
within a unified Adapton engine. We used these annotations
in IC-Edit as follows: We annotated the fold body of stage
2(b) as structural, since it reprocesses similiarly-structured
RAZ instances during the fold over the command sequence;
this annotation leverages structural hash-consing in the body
of this fold. Meanwhile, stages 1(a), 1(b) and 2(a) each use
Nominal Adapton to eliminate some space overhead of the
structural approach. Section 6 compares this mixed approach
to a variant that does not use nominal matching, showing a
modest reduction in space usage for the new, mixed variant.

Dynamic versus Stable Adapton Nodes. Prior implemen-
tations of Adapton employ heavyweight dependency graphs
to relate cached results to the computations and data on
which they depend, which generally change dynamically.
Meanwhile, due to the mixed regions described above, the
pure (but memoized) computations of IC-Edit’s stage 2(b)
only depend on immutable hash-cons’d cells, and do not re-
quire a full-blown dependency graph, since their results will
not change dynamically. Our implementation of Adapton
dynamically discovers and exploits the presence of such sta-
ble computations by eliding dependency edges for any sub-
computation that only depends on immutable data, or other
stable sub-computations. As Section 6 shows, this optimiza-
tion significantly improves the responsiveness of IC-Edit, as
well as its memory usage.



Sparse versus Dense Memoization. Prior implementations
of Adapton employed data structures to represent lists and
trees that change over time. In so doing, they tracked every
pointer of these structures, and cached every recursive call
that computed over them. In the data structures that imple-
ment IC-Edit (including the random access zipper), we ex-
periment with sparsely-tracked structures and computations.
To do so, we use the presence or absence of first-class names
to indicate that a pointer or recursive call should be tracked
(when it is “named”), or not (when it lacks an associated
name). In Section 6, modest levels of “sparseness” show no-
table reductions in time and space overhead.

Customized memory management. Finally, unlike prior
work, our Rust implementation of Adapton lacks a runtime
system providing general-purpose, traversal-based garbage
collection. (By contrast, the OCaml runtime system from
prior work uses a combination of copy and mark-sweep
techniques to automatically manage memory). As with Rust
programs generally, our implementation of Adapton and of
IC-Edit releases “stack-owned” memory as stack frames
are popped. However, we currently do not evict cells or
thunks from the Adapton library’s heap-allocated memoiza-
tion cache. Instead, Section 6 experiments with an extreme
approach that defers all cache management to the operat-
ing system’s virtual memory system, which uses swap space
under high memory load. As we discuss there, our current
performance results show that this crude form of “cache
eviction” actually works; further, it suggests that future work
can systemize preemptive cache eviction within the Adapton
library, eliding the need for swap space.

6. Evaluation
This section evaluates IC-Edit’s performance, and compares
our simple implementation with our responsive implementa-
tion. We find that the simple version requires quadratic time
to process a list of actions when they include non-local edits,
or linear time with only local edits. By contrast, the respon-
sive version requires sub-linear time, performing better after
only 1-2k actions, when the average time is under 1ms; over-
all, we measure an average response time of under 8ms.

Experimental Setup. Our experiments measure the re-
sponse time required to update the text buffer for each edit in
a randomized distribution of user actions, described below.
We also measure the current memory usage every 11 edits,
as reported by the UNIX tool ps; notably, it reports resident
set size (RSS), viz., the RAM used by the IC-Edit process,
ignoring swap space.

Our experiments measure two modes of interaction, each
representing a different distribution of actions, illustrated in
Figure 16. The distribution of local actions lacks commands
that navigate the cursor non-locally; it represents a “light
workload”. By contrast, the distribution of global actions
simulates concurrent editing with multiple users. It consists

Local Global

or andUndo Undo/
Redo

Insert

Insert

Switch
Goto

Overwrite

Overwrite

Remove

Remove

Move

Move

Figure 16: Random action distributions: Local vs global.

Figure 17: Responsive version at 190k-200k actions

of setup actions that create 32 cursors interposed with 60
padding characters; after this setup, the distribution gener-
ates random actions as follows: it either generates a sequence
of undos and redos (15% of total actions) or a pair of actions
that consist of one cursor switch (to the next cursor among
the 32-cursor sequence), and one random editing action, as
shown at the right of Figure 16. Since this global-edit distri-
bution consists of both switch and goto actions, it represents
a “heavy workload” for IC-Edit. In both distributions, we
generate undo and redo actions by generating a sequence of
10 undo actions, and then with 0.5 probabilty, 5 redo actions.

We evaluate the three Adapton optimizations from Sec-
tion 5 by evaluating their efficacy on the responsive imple-
mentation of IC-Edit. First, we compare structural memo-
ization with a mixed-use of structural and nominal memo-
ization. Next, we compare (ordinary) dynamic dependency
nodes with the optimization that employs (cheaper) stable
nodes. Finally, we compare dense dependence tracking with
versions that use the (cheaper) sparse optimization; we mea-
sure four settings in total: Dense and Sparse-{2–4}, where
the X in Sparse-X specifies how many user actions we gen-
erate in the initial action list before inserting a unique name.
For each optimization, we compare against a baseline that
only lacks the optimization in question; In particular, for
mixed, we use the stable optimization for both lines; for sta-
ble, we use mixed memoization for both lines.

All experiments were compiled with rustc 1.9.0-nightly
(e91f889ed 2016-03-03) release mode, and run on a 2.5 GHz
MacBook Pro with 16 GB of RAM running Mac OS X
10.10.5. Each experiment is run for 200k actions. We present
this data as a local average of the values before and after
any plotted point. Unless noted otherwise, each plotted point
represents an average of 20k actions.
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Figure 18: results

Simple versus responsive implementations. Figure 18a
shows the time (left) and space (right) for running the sim-
ple and responsive implementations on the local and global
workloads described above. In order to show crossover

points, this plot only shows 20k actions, 10% of the plots
discussed below. For the first 2k actions, the two global
workload lines are each linear, due to the setup actions de-
scribed above. At 3k actions, the Simp-Global line reaches
80ms, far outside the plotted bounds. By contrast, the Resp-
Global line at 3k actions is 3.3ms, and it does not reach or
exceed 5ms until 40k actions. Figure 17 shows that at 190k-
200k actions, over 75% of the measured actions are under
10ms, with very few exceeding 15ms.

Initially, the Simp-Local and Resp-Local lines are lower
than the Global lines, due to the lower total character count
created by their action distribution. Initially, Simp-Local out-
performs Resp-Local, but they cross over at only 2k actions.
The lack of cached results yields a linear trend for the simple
implementation, reaching 8ms after 16k actions.

The lack of cached data means our simple implementa-
tion requires very little memory: It uses no more than 40MB
regardless of number of past interactions or workload. By
contrast, the responsive version requires nearly 1GB for the
local-edit workload, and more memory for the global-edit
workload, since it caches the search path for each switch and
goto action.

Local-edit versus global-edit workloads. Figure 18b shows
time and space requirements for our responsive implemen-
tation of IC-Edit. The global workload takes only a few
milliseconds more than the local workload, which is far less
demanding. The initial trend in the global plot is sub-linear;
in the right hand side, we observe a mild impact from ex-
treme memory pressure.

The memory consumption of the global workload ap-
proaches the maximum for our test system (16GB). The op-
erating system responds by paging Adapton’s cache from
RAM into swap space. This paging results in a peak mem-
ory level followed by a plateau around 5GB in this and all
plots discussed below. That this paging only mildly impacts
responsiveness suggests that IC-Edit only uses a small frac-
tion of the cache provided by Adapton. We discuss this point
and its implications in more detail below.

Adapton Optimizations. Figure 18c compares structural
and mixed memoization. The plots show no significant time
difference, but our mixed implementation uses less memory
than the structural-only version. At 40k actions, for example,
we measure space usage of 7.4GB and 9.4GB respectively.

Figure 18d compares the stable-node optimization to the
dynamic-only version, where we observe significant time
and space improvements. At 160k prior interactions, the
dynamic-only version takes 50% more time; at 40k actions,
it takes 50% more space.

Finally, Figure 18e compares the different sparsity set-
tings. As the plot shows, sparseness improves both space
and time. Though we experimented with higher sparseness
settings, we did not observe further performance improve-
ments. We conclude that sparseness is promising, but its use
in IC-Edit requires more investigation to fully understand.



Current Limitations: Space Requirements. As discussed
above, the simple implemention of IC-Edit consumes lit-
tle memory compared to the responsive implementation,
whose memory consumption is significant. Though not plot-
ted above, we routinely observed that total memory (as es-
timated by Mac OS X), reached as high as 50GB at 200k
actions. However, the space results in Figure 18 also sug-
gest that future work can dramatically reduce the memory
required by IC-Edit, and similar applications of the PRY
methodology: While we observe that total memory (swap
and resident) grows monotonically, after the system be-
gins using swap space, resident memory flattens without
adversely impacting the corresponding response times. This
consistently-observed behavior suggests that future work
can systemize aggressive, preemptive cache eviction within
the Adapton library, rather than the OS, eliding the need
for system-level swap space. Exploring this potential is out-
side the scope of the current paper, but instead remains as
exciting future work.

7. Related Work
Reactive Computing. Reactive programming languages
offer abstractions for processing events generated by dy-
namic environments. Early examples of event-based reac-
tive environments for real-time systems in embedded soft-
ware include Signal (Guernic et al. 1986) and Lustre (Caspi
et al. 1987). Functional Reactive Programming (FRP) is a
declarative programming model for constructing interactive
applications (Elliott and Hudak 1997; Nilsson et al. 2002;
Wan and Hudak 2000; Mandel and Pouzet 2005; Cooper
and Krishnamurthi 2006; Ignatoff et al. 2006; Meyerovich
et al. 2009; Courtney 2001; Krishnaswami 2013; Czaplicki
and Chong 2013; Demetrescu et al. 2014; Boussinot and
Susini 1998).

Arguably, the chief aim of FRP is to provide a declar-
ative means of specifying programs whose values are time-
dependent (stored in signals). In particular, each reactive lan-
guage and FRP approach offers a set of building blocks for
creating interactive systems with stateful feedback. Unlike
PRY, these approaches do not define state as “the history of
all past inputs”, nor do they offer general-purpose IC, which
seems necessary for a responsive implementation under such
definitions of state. However, FRP abstractions do appear ap-
plicable for defining the “outer feedback loop” illustrated in
Section 1, including a PRY-based system’s interface to the
underlying system’s input and output signals.

Incremental computing. Researchers have provided var-
ious language-based approaches to incremental computa-
tion (Acar et al. 2006; Hammer and Acar 2008; Acar and
Ley-Wild 2009; Hammer et al. 2015b). In particular, re-
searchers have shown that for certain algorithms, inputs,
and classes of input changes, IC delivers large, even asymp-
totic speed-ups over full reevaluation (Acar et al. 2007,
2008). IC has been developed in many different language

settings (Shankar and Bodik 2007; Hammer et al. 2007,
2009; Chen et al. 2014b), and has addresses open problems
in computational geometry (Acar et al. 2010).

Some PL approaches to IC are static, transforming pro-
grams to derive a second program that can process input
changes. Static approaches perform these transformations
a priori, before any dynamic changes. As such, static ap-
proaches are often lack the ability to transform general recur-
sion or to fully cache and exploit dynamic dependencies (Liu
and Teitelbaum 1995; Liu et al. 1998; Cai et al. 2014).

In contrast to static approaches, dynamic approaches
attempt to trade space for time savings. A variety of dy-
namic approaches to IC have been proposed. Most early
approaches fall into one of two camps: they either per-
form function caching of pure programs (Bellman 1957;
McCarthy 1963; Michie 1968; Pugh 1988), or they sup-
port input mutation and employ some form of dynamic de-
pendency graphs, along with a mechanism for performing
change propagation (Acar et al. 2004, 2006; Hammer and
Acar 2008; Acar and Ley-Wild 2009; Hammer et al. 2015a)
Earlier work restricted programs to those expressible as at-
tribute grammars (Demers et al. 1981; Reps 1982a,b; Vogt
et al. 1991). Various threads of research propose general
schemes for practical memoization, either making it appli-
cable in more settings, or more efficient. Researchers have
extended memoization to extend memoization to parallel C
and C++ programs Bhatotia et al. (2015), to extend mem-
oization to distributed, cloud-based settings Bhatotia et al.
(2011), and have reduced the (often large) space overhead
Chen et al. (2014a).

8. Conclusion
We propose the PRY methodology, which encourages de-
velopers to program interactive systems in two phases: The
first phase advocates a purely-functional design whose state
consists of all prior user inputs; the second phase seeks a
responsive model by leveraging clever functional data struc-
tures, and techniques for general-purpose incremental com-
putation (IC). We demonstrate PRY with a proof-of-concept
text editor IC-Edit that we show is simple, specified by a for-
mal semantics, and responsive (under 8ms, on average). To
achieve this performance, we develop a novel functional data
structure, the random access zipper (RAZ); it admits log-
time random access, constant-time updates, and is amenable
to IC. We also implement Adapton in Rust, allowing PRY-
based programs to eschew garbage collection and experi-
ment with a radical “cache everything” approach. Overall,
we find strong evidence that future work can reduce swap
space requirements with library-level (rather than system-
level) cache eviction policies. Finally, we significantly lower
the time and space requirements of Adapton by introducing
several novel optimizations, and evaluate each empirically.
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