
Planned

Complete
In Progress

Meta Theory

Implementation
Formal Definition

Collections Library

Sequences
(Giraz)

Maps Graphs

Typed
Adapton

IODyn
Language

Translation
Soundness

Parser

AST

Collections
Interface

Source
Projection

Target
ProjectionAST

Specification
Results

Spec
Evaluation

Collections
wrappers

Incremental
Results

Verification

Incr.
Evaluation

Type-
Checking

Type-
Checking

TranslationTranslation
Judgements

SMT-
based

refinement
checking

Collections
Tests Incremental

Strategies

IODyn Status

Core
Tests

Adapton
Incremental Engine

Integration
Tests

Performance
Tests

December 2017

by Kyle Headley

More info at kyleheadley.github.io

IODyn: A High-Level Language
for Incremental Computation

In
cr

em
en

ta
l C

om
pu

ta
tio

n

Macro parsing

Bidirectional type
checking

Co
lle

ct
ion

s L
ib

ra
ry

Incremental Computation is
about updating previously
executed computations such
that the update is faster than
the original time. Sometimes
this is not possible, like when
most of the data is different. In
that case, the best thing to do
is re-run the computation.
Sometimes, computations are
simple enough that we can
represent the changes as
deltas from the original, and
compute directly on the deltas.
This type of incremental
computation is extremely fast,
but does not generalize. For
general-purpose incremental
computation, we need to keep
dynamic dependency graphs
that track the flow of changed
d a t a t h r o u g h o u t a
computation.

Prior incremental code requires specific library calls and
knowledge about how to make code incrementally efficient.
This means filling code with low-level library calls, even in
high-level code.

•Incremental computation is critical for
efficient, high-performance code.

•Caching and reuse require advanced
techniques and languages

•Current implementations are ad-hoc, and
may not be sound.

IODyn offers a simple language including
incremental collections.

This example shows the calculation of max element of a list by splitting it
roughly in half and recursing, running binary max on individual elements. It
requires conversions to and from `MemoList`, to provide incremental change
notification. It also requires explicit memoization of recursive calls.

The Giraz is a data structure for storing
and computing with sequences.
Internally it uses a tree of incremental
data cells, ending in leaves containing
arrays of subsequences. The cells
provide incrementality, and the arrays
provide cache locality for performance.
The tree is balanced with a ‘canonical
form’, so that unedited data is never
effected by rebalancing.

Functions over the tree like maps and
fo lds are imp lemented to take
advantage of the Adapton engine, so
that computations after small edits are
tens to hundreds of times faster than
the or ig ina l . Each computat ion
produces a compute structure mirroring
the data structure. When data changes,
the path up the tree to the root is
marked as needing an update.
Unmarked nodes are not recomputed.

macro_rules! make_exp {
…
// thk e
{ thk $($exp:tt)+ } => {{ Exp::Thunk(Rc::new(make_exp![$($exp)+])) }};
// lam r.e (lambda)
{ lam $var:ident . $($body:tt)+ } => {{
Exp::Lam(stringify![$var].to_string(),Rc::new(make_exp![$($body)+]))

}};
…
}

Pattern Conversion

Repeating Pattern ‘Recursive’ call

Rust macros are sophisticated enough to
parse simple languages, so we take
advantage of this to get a jump start on
getting input to our IODyn language.

R u s t m a c r o s
aren’t able to parse
sequences of multiple
spec ia l charac te rs
directly with patterns, so
we developed a macro-
based fold to do so. We use it
for parameter lists, and type
signatures that have nested
arrows, sum types, and product
types.

{fix qh. lam pts. lam line. lam hull.
let complete = { SeqIsEmpty(pts) }
if (complete) then { ret hull } else {
 let mid = { SeqFoldUp(
 pts, (0,0), lam p.ret p, force highest
) }
 let hull = {
 let r_line = {{force make_r_line} mid line}
 let r_pts = { [s [sym filt-r]] SeqFilter(
 pts, {force above_line} r_line
) }
 [s [sym rec-r]] {force qh} r_pts r_line hull
 }
 let hull = { SeqAppend(hull, mid) }
 let l_line = { {force make_l_line} line mid }
 let l_pts = { [s [sym filt-l]] SeqFilter(
 pts, {force above_line} l_line
) }
 [s [sym rec-l]] {force qh} l_pts l_line hull
}} : Seq((nat x nat)) ->
 ((nat x nat) x (nat x nat)) ->
 Seq((nat x nat)) ->
 F Seq((nat x nat))

Quickhull Sample

Single
annotation

Parametric
primitives

Project assisted by Matthew Hammer

Adapton handles dependency graphs
and has been proven to produce
correct results when cache is accessed
appropriately. To assist in this access,
Typed Adapton uses refinement types
to keep track of names representing
cache locations. Names act like
pointers into cache. Sets of names
potentially contain all dynamically
allocated cache.

Problem

Background

Background

Background

Explicit
subsequence

read/write data for
dependency

tracking

automatic change
propagation

fn max(ml: MemoList) -> Num {
 let l = read(ml);
 let (a,b) = match split(l) {
 None => l.pop(),
 Some((a,b)) => {
 bin_max(
 memo(max(write(a))),
 memo(max(write(b)))
)
 }
 }
}

IODyn uses a bidirectional
type checker, a compromise

between full annotations
and passing around type

variables. Key components
may need annotation, but

we can type-check higher-
o rde r p r im i t i ves even

without needing full-featured
parametric polymorphism.

IODyn uses hints like the
ones at the beginning of
these lines to indicate
sections of code that
have certain incremental
properties. Here, we’re
labelling each recursive
call, meaning that the
path to reach each is not
expected to change
much. This is the case
for quickhull, which deals
with points in space.
Paths through euclidean
space are likely to reach
the same general area
after small changes.

Hints

if Γ⊢e:C ⤳x Γ⊢e:C▹ε

and σ;e ⇓ σ’;t’
…
then
…
Γ’⊢t’:C ⤳y Γ’⊢t’:C▹⟪∅,∅⟫

and σ;[n/x]e ⇓ σ’;t’

Translation
Soundness

We are working through a proof that
the translation from the IODyn source
language to the Typed Adapton target
language is sound.

Typed Adapton is a refinement type system with effects. These
effects track which names are used in the evaluation on an
expression. Here we see the effects of a terminal expression.
When evaluated, it does not write to or read from any names,
as expected.

Effects

Source translates to target
Source evaluates to terminal

There are some additional premises, exists
variables, and conclusions omitted here for

s impl ici ty. They most ly concern store
translation and facts about the names (x,y,n

above)

Refinement type-
checking with Z3

Typed Adapton refinements are typically sets of
names. Type-checking judgements dealing with
these sets are non-deterministic and difficult to
implements. We have been experimenting with
the Z3 SMT solver to assist in this task.

/// join two effect sets into a new one, accounting for order
pub fn then(&mut self, a:usize,b:usize,c:usize) {
 self.effect_new(c);
 // write sets are disjoint
 writeln!(self.stdin,"(assert (= empty ((_ map and) w{} w{})))",a,b);
 // write before read
 writeln!(self.stdin,"(assert (= empty ((_ map and) r{} w{})))",a,b);
 // c = a union b
 writeln!(self.stdin,"(assert (= w{} ((_ map or) w{} w{})))",c,a,b);
 writeln!(self.stdin,"(assert (= r{} ((_ map or) r{} r{})))",c,a,b);
}

There are no well-developed libraries
for Z3 in Rust, so we run it as a

separate thered and communicate
through standard unix pipes. This

way, we could learn about Z3
using its native language.

This worked well for initial
use, but needs to be

refined to handle errors
better.

This example shows the `then`
rule, used for consecutive
expression evaluation with let-
binding. The second expression
must not write(w) to the names
read(r) o r wr i t ten by the fi rs t
expression. The effects of the unified let
expression are the union of the effects of
its sub expressions.

IODyn is used like a general-purpose functional language, for simplicity. It
translates to Typed Adapton, providing incremental behavior. It makes use of
an incremental collections library, providing performance for large data sets.
IODyn has only been in development for a few months now, but is based on
prior incremental projects, like Adapton, and the Giraz.

Background

Contributions
The IODyn project will soon
be a full pipeline for compiling
simple source code into an
optimized incremental
executable. It will be able to
handle changes to large
amounts of data, recomputing
results in asymptotically less
time than initial computation.
IODyn will allow non-experts
of IC to use simple designs to
build incremental applications
that are type-safe,
incrementally sound (identical
results as from-scratch code),
and with performance rivaling
more complex programs.
IODyn will bring general-
purpose incremental
computing to a wider range of
users.

Typed Adapton
N = ⟪n1,n2⟫ : Nm

X = {N} ⊥ {n3} : NmSet

v = name(N) : Nm[X] ε = ⟨X;∅⟩

Terms

Sets

 Values

Term Functions

 M = λa.⟪a,N⟫ : Nm →Nm Nm

Names

Mapping

M[X] : NmSet

Index Functions

 λa.a ⊥ {N} : NmSet →idx NmSet

What:

Effects

λz.ref(v,z) : Ref[X] int ▸ ed ▹ ε

computation

Example:

calling these functions
will introduce a
dependency

graph:

fold_up()
fold_lr()
map()

Compute
Structure

Data
StructureGiraz

Computation Node Structural Node

Arrays

Terminal translates to result
Target evaluates to result

Incremental Libraries

Initial Input Changed Input

Initial Output

Input change

fn mP

I1 I2ΔI

O1 O2ΔO
Output change

Non-incremental

Change Computation

Change Propagation

Changed Output

Initial Computation

Update Values

fn ΔPfn P fn P
Derived change function

Memo/
Dependency function Original functionOriginal function

