
Planned

Complete
In Progress

Meta Theory

Implementation
Formal Definition

Collections Library

Sequences 
(Giraz)

Maps Graphs

Typed      
Adapton

IODyn   
Language 

Translation 
Soundness

Parser

AST

Collections 
Interface

Source 
Projection

Target 
ProjectionAST

Specification 
Results

Spec 
Evaluation

Collections 
wrappers

Incremental 
Results

Verification

Incr. 
Evaluation

Type-
Checking

Type-
Checking

TranslationTranslation  
Judgements

SMT-
based 

refinement 
checking

Collections 
Tests Incremental 

Strategies

IODyn Status

Core 
Tests

Adapton 
Incremental Engine

Integration 
Tests

Performance 
Tests

December 2017

by Kyle Headley

More info at kyleheadley.github.io

IODyn: A High-Level Language 
for Incremental Computation
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Incremental Computation is 
about updating previously 
executed computations such 
that the update is faster than 
the original time. Sometimes 
this is not possible, like when 
most of the data is different. In 
that case, the best thing to do 
is re-run the computation. 
Sometimes, computations are 
simple enough that we can 
represent the changes as 
deltas from the original, and 
compute directly on the deltas. 
This type of incremental 
computation is extremely fast, 
but does not generalize. For 
general-purpose incremental 
computation, we need to keep 
dynamic dependency graphs 
that track the flow of changed 
d a t a t h r o u g h o u t a 
computation. 

Prior incremental code requires specific library calls and 
knowledge about how to make code incrementally efficient. 
This means filling code with low-level library calls, even in 
high-level code.

•Incremental computation is critical for 
efficient, high-performance code.

•Caching and reuse require advanced 
techniques and languages

•Current implementations are ad-hoc, and 
may not be sound.

IODyn offers a simple language including 
incremental collections. 

This example shows the calculation of max element of a list by splitting it 
roughly in half and recursing, running binary max on individual elements. It 
requires conversions to and from `MemoList`, to provide incremental change 
notification. It also requires explicit memoization of recursive calls.

The Giraz is a data structure for storing 
and computing with sequences. 
Internally it uses a tree of incremental 
data cells, ending in leaves containing 
arrays of subsequences. The cells 
provide incrementality, and the arrays 
provide cache locality for performance. 
The tree is balanced with a ‘canonical 
form’, so that unedited data is never 
effected by rebalancing.

Functions over the tree like maps and 
fo lds are imp lemented to take 
advantage of the Adapton engine, so 
that computations after small edits are 
tens to hundreds of times faster than 
the or ig ina l . Each computat ion 
produces a compute structure mirroring 
the data structure. When data changes, 
the path up the tree to the root is 
marked as needing an update. 
Unmarked nodes are not recomputed.

macro_rules! make_exp { 
… 
// thk e 
{ thk $($exp:tt)+ } => {{ Exp::Thunk(Rc::new(make_exp![$($exp)+])) }}; 
// lam r.e (lambda) 
{ lam $var:ident . $($body:tt)+ } => {{ 
Exp::Lam(stringify![$var].to_string(),Rc::new(make_exp![$($body)+])) 

}}; 
… 
} 

Pattern Conversion

Repeating Pattern ‘Recursive’ call

Rust macros are sophisticated enough to 
parse simple languages, so we take 
advantage of this to get a jump start on 
getting input to our IODyn language.

R u s t m a c r o s 
aren’t able to parse 
sequences of multiple 
spec ia l charac te rs 
directly with patterns, so 
we developed a macro-
based fold to do so. We use it 
for  parameter lists, and type 
signatures that have nested 
arrows, sum types, and product 
types.

{fix qh. lam pts. lam line. lam hull. 
let complete = { SeqIsEmpty(pts) } 
if (complete) then { ret hull } else { 
  let mid = { SeqFoldUp( 
    pts, (0,0), lam p.ret p, force highest 
  ) } 
  let hull = { 
    let r_line = {{force make_r_line} mid line} 
    let r_pts = { [s [sym filt-r]] SeqFilter( 
      pts, {force above_line} r_line 
    ) } 
    [s [sym rec-r]] {force qh} r_pts r_line hull 
  } 
  let hull = { SeqAppend(hull, mid) } 
  let l_line = { {force make_l_line} line mid } 
  let l_pts = { [s [sym filt-l]] SeqFilter( 
    pts, {force above_line} l_line 
  ) } 
  [s [sym rec-l]] {force qh} l_pts l_line hull 
}} : Seq((nat x nat)) -> 
    ((nat x nat) x (nat x nat)) -> 
    Seq((nat x nat)) -> 
    F Seq((nat x nat)) 

Quickhull Sample

Single 
annotation

Parametric 
primitives

Project assisted by Matthew Hammer

Adapton handles dependency graphs 
and has been proven to produce 
correct results when cache is accessed 
appropriately. To assist in this access, 
Typed Adapton uses refinement types 
to keep track of names representing 
cache locations. Names act like 
pointers into cache. Sets of names 
potentially contain all dynamically 
allocated cache.
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fn max(ml: MemoList) -> Num { 
 let l = read(ml); 
 let (a,b) = match split(l) { 
  None => l.pop(), 
  Some((a,b)) => { 
   bin_max( 
    memo(max(write(a))), 
    memo(max(write(b))) 
   ) 
  } 
 } 
}

IODyn uses a bidirectional 
type checker, a compromise 

between full annotations 
and passing around type 

variables. Key components 
may need annotation, but 

we can type-check higher-
o rde r p r im i t i ves even 

without needing full-featured 
parametric polymorphism.

IODyn uses hints like the 
ones at the beginning of 
these lines to indicate 
sections of code that 
have certain incremental 
properties. Here, we’re 
labelling each recursive 
call, meaning that the 
path to reach each is not 
expected to change 
much. This is the case 
for quickhull, which deals 
with points in space. 
Paths through euclidean 
space are likely to reach 
the same general area 
after small changes.

Hints

if Γ⊢e:C ⤳x Γ⊢e:C▹ε 

and σ;e ⇓ σ’;t’ 
… 
then 
… 
Γ’⊢t’:C ⤳y Γ’⊢t’:C▹⟪∅,∅⟫ 

and σ;[n/x]e ⇓ σ’;t’

Translation 
Soundness

We are working through a proof that 
the translation from the IODyn source 
language to the Typed Adapton target 
language is sound.

Typed Adapton is a refinement type system with effects. These 
effects track which names are used in the evaluation on an 
expression. Here we see  the effects of a terminal expression. 
When evaluated, it does not write to or read from any names, 
as expected.

Effects

Source translates to target 
Source evaluates to terminal

There are some additional premises, exists 
variables, and conclusions omitted here for 

s impl ici ty. They most ly concern store 
translation and facts about the names (x,y,n 

above)

Refinement type-
checking with Z3

Typed Adapton refinements are typically sets of 
names. Type-checking judgements dealing with 
these sets are non-deterministic and difficult to 
implements. We have been experimenting with 
the Z3 SMT solver to assist in this task.

/// join two effect sets into a new one, accounting for order 
pub fn then(&mut self, a:usize,b:usize,c:usize) { 
  self.effect_new(c); 
  // write sets are disjoint 
  writeln!(self.stdin,"(assert (= empty ((_ map and) w{} w{})))",a,b); 
  // write before read 
  writeln!(self.stdin,"(assert (= empty ((_ map and) r{} w{})))",a,b); 
  // c = a union b 
  writeln!(self.stdin,"(assert (= w{} ((_ map or) w{} w{})))",c,a,b); 
  writeln!(self.stdin,"(assert (= r{} ((_ map or) r{} r{})))",c,a,b); 
}

There are no well-developed libraries 
for Z3 in Rust, so we run it as a 

separate thered and communicate 
through standard unix pipes. This 

way, we could learn about Z3 
using its native language. 

This worked well for initial 
use, but needs to be 

refined to handle errors 
better.

This example shows the `then` 
rule, used for consecutive 
expression evaluation with let-
binding. The second expression 
must not  write(w) to the names 
read( r ) o r wr i t ten by the fi rs t 
expression. The effects of the unified let 
expression are the union of the effects of 
its sub expressions.

IODyn is used like a general-purpose functional language, for simplicity. It 
translates to Typed Adapton, providing incremental behavior. It makes use of 
an incremental collections library, providing performance for large data sets. 
IODyn has only been in development for a few months now, but is based on 
prior incremental projects, like Adapton, and the Giraz.

Background

Contributions
The IODyn project will soon 
be a full pipeline for compiling 
simple source code into an 
optimized incremental 
executable. It will be able to 
handle changes to large 
amounts of data, recomputing 
results in asymptotically less 
time than initial computation.
IODyn will allow non-experts 
of IC to use simple designs to 
build incremental applications 
that are type-safe, 
incrementally sound (identical 
results as from-scratch code), 
and with performance rivaling 
more complex programs. 
IODyn will bring general-
purpose incremental 
computing to a wider range of 
users. 

Typed Adapton
N = ⟪n1,n2⟫ : Nm

X = {N} ⊥ {n3} : NmSet

v = name(N) : Nm[X] ε = ⟨X;∅⟩

Terms

Sets

 Values

Term Functions

         M = λa.⟪a,N⟫ : Nm →Nm Nm

Names

Mapping

M[X] : NmSet

Index Functions

 λa.a ⊥ {N} : NmSet →idx NmSet

What:

Effects

λz.ref(v,z) : Ref[X] int ▸ ed ▹ ε

computation

Example:

calling these functions 
will introduce a 
dependency 

graph:
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fold_lr() 
map()
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