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Incremental computation permeates modern soft-
ware. A computation is incremental if repeating it
with a changed input is faster than from-scratch re-
computation. Programmers implement most contem-
porary incremental functionality in an ad-hoc man-
ner, built into the efficient implementation of the
system being designed. I have been working on
language- and library-based incremental computa-
tion methods in order to increase the efficiency of
code in a more systematic way.

Background The state of the art in general pur-
pose, or language based, incremental computation in-
volves building dynamic dependency graphs of pro-
gram control flow and maintaining memoization ta-
bles of prior results. Dependency graphs allow a
program to mark all functions affected by an in-
put change, and memoization tables provide results
of prior computations that may be used to update
an affected function’s output without recomputing
it. Dependency graphs may maintain a total order
for efficiency, or a partial order for flexibility. Mem-
oization tables often use keys with some computed
value based on a function’s arguments, to allow irrel-
evant minor changes to be ignored. Two of the stan-
dards currently competing on general purpose incre-
mental computation performance are SAC and Adap-
ton. “Self adjusting computation” or SAC [2] is a set
of techniques based around a totally ordered depen-
dency graph and annotated function calls. (Nominal)
Adapton [3] is an incremental computation engine
based on a partially ordered dependency graph and
user-defined “names” to key its memoization tables.

Limitations General purpose incremental compu-
tation requires a lot of overhead in memory and time.
Storing dependency graphs and memoization tables
consumes memory. Creating these features and the
running the algorithms that search them consume
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time. Incremental algorithms produce data with lo-
calized differences for different inputs, but the extent
of the locality may not be known, requiring depen-
dency graphs to mark and then clean functions that
are not affected by a change.

Approach Programmers can group up functions
and data used in an incremental setting so that de-
pendency tracking and memoization act on groups
rather than individual items. This technique puts the
burden of the incremental system on the program-
mer, opening the door to human error. I design data
structures and higher-order functions in the Rust lan-
guage that contain additional grouping markers and
grouping code respectively. A user then runs these
functions over these data structures, which implicitly
perform the groupings based on the markers. The
data structure defines data markers by keeping data
in multiple separate arrays (Rust uses the term “vec-
tor”), and function markers by flags in its nodes. User
code for processing data runs on the vectors through
Rust aggregate features. User code affecting a data
structure node is only memoized if a flag is present.
Non-memoized code is grouped with the memoized
function that calls it.

Gauged Incremental Random Access Zipper
I am designing and implementing an incremental

form of the Random Access Zipper (Raz) [4]. The
Raz represents a sequence with a tree structure in-
ternally, one that rebalances only on the path from
an edited node to the root. Algorithms written this
way ensure compatibility with incremental computa-
tion. My enhancement replaces individual elements
with vectors of elements, with the expected size of the
vector called the “gauge”. The Raz is also enhanced
with markers for function memoization and names for
use with Adapton. Lets call this new version of the
Raz a “Giraz”.

The Giraz does not exclusively perform incremen-
tal computations. When not involved in an incremen-
tal computation, or while preparing for one, the Gi-
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raz has similar performance to equivalent data struc-
tures. For example, the first figure shows the time
to create a sequence from scratch using Rust’s vec-
tor or the Giraz. The test that generated this data
pushes elements into an empty data structure until it
reaches the target size. During this process the vec-
tor needs to occasionally relocate when it reaches its
carrying capacity. The test also switches the mode of
the Giraz from “edit” to “compute” when the target
size is reached, which takes O(log n) time, where n
is the number of vectors(elements/gauge). This test
uses gauge 1000 and elements with a primitive copy
operation.

Tuning Making a dependency graph node for every
aspect of a program requires so much memory that
traversing it to adjust after a change may take longer
than recomputation. While grouping data and func-
tions can reduce this effect, it does not guarantee bet-
ter performance. Incrementally updating a computa-
tion with everything grouped into one dependency
node is equivalent to from-scratch computation but
with the overhead of the incremental techniques. The
user of the Giraz needs to chose parameters that op-
timize the performance gains of incremental compu-
tation. The design of the Giraz allows for this tuning
in newly added data.

The second figure shows the affects of different
gauges on a non-trivial toy computation. The task
is to parse a string of numbers and addition symbols,
interpreting the sequence like a reverse-polish calcu-
lation. The computation begins with a sequence of
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characters and ends with a shorter sequence of inte-
gers. The native rust implementation of this requires
under 10ms to parse a sequence of a million charac-
ters. The incremental test folds over the Giraz, mem-
oizing at the internal markers, in this case located at
vector boundaries. The best initial incremental com-
putation shown takes at lease 65ms. However, as the
test proceeds, the time to recompute after an inser-
tion to the character sequence is accumulated. There
is a crossover point where it is faster to use incremen-
tal computation than to recompute after each edit.
The test clearly demonstrates the trade off described
above: low gauges update fast with slow initial com-
putation, while high gauges update slow with fast
initial computation.

Related Work Prior work on SAC introduced ab-
stract data types [1] to group data and functions to
be memoized. That work concentrates on a generic
interface for hand-crafted data types that can not
be further tuned. Later work on SAC introduces
“blocked lists” [2] similar to using vectors in the Gi-
raz. The block boundaries are based on the data,
allowing the possibility of degenerate blocks. Late
in the paper is a “reduce” benchmark that is similar
to one written for the Giraz. At low gauges (block
sizes), our results are similar, with the Giraz taking
slightly more memory, and slightly more recomputa-
tion time. At high gauges, however, this situation is
reversed, and additionally, the Giraz initial compu-
tation time is an order of magnitude faster.
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