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Visualizing Abstract Abstract Machines

KYLE HEADLEY, University of Alabama, Birmingham
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We present an approach for interactively visualizing static analyses built using the abstracting abstract machines (AAM)
methodology—a process that yields a static program analysis by abstract interpretation of an abstract machine. The resulting
analysis is a state graph of all possible machine states—with paths through this graph encoding possible executions of the
program—combined with a model of the heap. To understand or audit the results of such an analysis (e.g., for debugging or
improving the analysis) can become a laborious process of stepping from state to state, building an intuition for each, while
considering valid executions that are missing and spurious executions that are included. Finding states relevant to some
program property, on its own, can involve writing a custom predicate to match such states at the REPL.

In this paper, we explore an approach to concisely visualizing AAM-based analyses of Scheme programs by decomposing
the analysis into its functional components and displaying nested graphs for inter- and intra-procedural control flow. We
allow interactive visualization in that the user can focus on specific functions or lines of code to discover if they’re reachable,
in what contexts, atop what stacks, and with what values bound to variables in scope, in terms of states in an abstract abstract
machine.

Additional Key Words and Phrases: program analysis, visualization, program understanding, abstract interpretation

1 INTRODUCTION
Abstract interpretation (AI) is a powerful technique for reasoning about the behavior of programs [Cousot and
Cousot 1977a]. For example, AI can verify the absence of null pointer errors, be used to inline polymorphic
function calls, eliminate runtime array-bounds checks, and more. In this paper, we focus on understanding the
results of abstract interpretation, applied to abstract machines—a common approach to programming language
semantics (we present background on this approach in Section 2).

While static analysis tools have varied and important applications, they are often seen as complex and hard-to-
understand. In particular, when the analysis produces an unexpected result, it can be exceptionally challenging
to understand what led to that result. Our goal is to develop an effective visualization that allows an analysis
user or designer to systematically understand an analysis result. We foresee several potential users of such a
visualization including analysis developers, students seeking to understand abstract interpretation, and static
analysis researchers attempting to understand the effects of various precision-enhancing techniques on the final
analysis results.

Our visualization builds upon the abstracting abstract machines (AAM) program analysis methodology [Might
2010; Van Horn and Might 2010]. In AAM, the result of the abstract interpretation is a control-flow graph
(representing explored program behavior) and a model of the heap. This leads to a straightfoward visualization
via the control-flow graph produced by the analysis. However, as we observe in Section 3, this is not necessarily
an ideal visualization. Instead, we develop an analysis presenting the user with two views: one for intraprocedural
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behavior and one for interprocedural behavior. This allows the user to focus on the execution of an individual
function while also seeing a summary of the whole-program, interprocedural behavior in a side-by-side view.
We have implemented a web-based prototype visualization for Shivers’ k-CFA [Shivers 1988] using our

technique. Our implementation analyzes a subset of Scheme and allows for easy tuning of analysis sensitivity.
Our system presents a visualization to the user and allows them to step through the analysis results, inspecting
both the control-flow and values of variables, alongside the program’s source. We see this as a promising step
that we hope can lead to improvements in the way users and designers interact with the results of static analysis.

Contributions. In this paper we make the following contributions.
• We present an AAM-style analysis for a Scheme IR that is flexible enough to reach a variety of different
analysis goals by adjusting a small number of parameters.

• We describe an algorithm for segmenting AAM-style analyses so that a visualizationmay focus on individual
functions and their interactions.

• We implement our approach as a web application (https://analysisviz.gilray.net) to visualize and explore
analyses of Scheme programs.

The rest of the paper is organized as follows: we develop an abstract abstract machine (AAM) for Scheme in
section 2. We start with a concrete semantics of a small intermediate language λscm defined as operational rules
for advancing a machine state in section 2.1. This is used to develop an abstract semantics in section 2.2, and
provided with features for efficiency and tunability in section 2.3. Section 3 presents the trouble with exploring
the results of an AAM analysis naïvely, motivating our work on an AAM visualizer. We walk through a demo
in section 3.1, discuss potential pitfalls of visualizations in section 3.2, and introduce our strategy for dealing
with these issues in section 3.3. We cover our implementation in section 4, which includes a novel segmentation
algorithm (presented in section 4.2) to assemble the different views used in our visualizer.

2 ABSTRACT ABSTRACT MACHINES
The theory of abstract interpretation (AI) [Cousot and Cousot 1976, 1977a,b, 1992] gives us a toolset for
modeling the behavior of a program (explicating and proving its properties) by over- or under-approximating the
set of possible execution traces for the program. This is accomplished by modifying a concrete semantics for the
target programming language to produce an abstract semantics that faithfully models the original, maintaining
some essential accuracy while trading away precision in return for computability and an upper-bound on analysis
complexity. With sufficient precision, computable static analyses constructed in this way are able to verify
important safety properties, empower compiler optimizations, and assist in auditing a program’s information
flows and behavior.
Abstracting abstract machines (AAM) [Might 2010; Van Horn and Might 2010] is a general methodology

for applying abstract interpretation to abstract-machine-based semantics. Abstract machines are a type of a
structural operational semantics [Hennessy 1990; Plotkin 1981; Winskel 1993] relating a succession of machine
states, each encoded as a tuple of machine components such as a control expression or program counter, a
store/heap, and a call stack. Abstract machines give semantics engineers fine-grained control to represent all
important aspects of program interpretation (such as control-flow, mutation, first-class control, exceptions,
first-class functions, etc) using arbitrary, nested mathematical entities such as tuples, sets, and maps, and to
describe precisely how the machine in one state advances to its succeeding state (potentially stepping from state
to state forever, or until terminating properly, or getting into a stuck error state that cannot be advanced).

The AAM methodology allows a high degree of control over how program states are represented and makes it
easy to instrument with additional information as necessary. In a functional setting, for example, it is natural
to construct a control-flow analysis (CFA) [Might 2007; Shivers 1991] that models the possible control-flow
paths a program may follow in any concrete evaluation. CFA requires closure analysis—that is, tracking which
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e ∈ Exp ::= (let ([x0 e0][x1 e1]...) eb )

| (e0 e1...)

| ae

ae ∈ AExp ::= x | lam

lam ∈ Lam ::= (λ (x y...) e)

x ,y ∈ Var is a set of identifiers

Fig. 1. Our target language λscm

A(x , ρ,σ ) ≜ σ (ρ(x))

A((λ (x0...) e), ρ,σ ) ≜ ⟨clo (λ (x0...) e), ρ⟩

Fig. 2. Concrete atomic-expression evaluation

ς ∈ Σ ≜

{
eval: Exp × Env × Store × Kont
apply: Clo∗ × Store × Kont

ρ ∈ Env ≜ Var⇀ Addr

σ ∈ Store ≜ Addr ⇀ Clo

clo ∈ Clo ≜ Lam × Env

κ ∈ Kont ≜ Frame∗

ψ ∈ Frame ≜ Clo∗ × Exp∗ × Env

a ∈ Addr is an infinite set

Fig. 3. CESK machine domains

closures can flow to which program variables or heap addresses—in order to bound the possible the callees
invoked at any particular call site.
In this section, we review the principles of AAM, including how to tune precision and complexity, how to

perform standard structural simplifications, and how to plug-in different approximations for program values.
We develop an abstract machine (concrete semantics) and abstract abstract machine (abstract semantics) for a
Scheme intermediate representation that we will visualize in following sections.

2.1 Abstract Machines (CESK)
In this section we define a concrete semantics for the language λscm, shown in figure 1. We demonstrate our
general approach to analysis using this core intermediate language, deriving an abstract semantics from its
concrete semantics. Figure 3 defines a CESK machine whose states are generally comprised of four components: a
control expression, a binding environment, a value store, and a continuation (model of the stack). More specifically,
machine states are one of two kinds: an eval state or an apply state. eval states have expression, environment, store,
and continuation components. apply states have a list of values (a function being applied followed by its arguments)
and a store and continuation.

We denote domains of unbounded sequences using a star operator; for example, a continuation (κ) is defined
as a sequence of frames, (ψ ). Each of these frames consists of a sequence of values (closures), a sequence of
expressions to be evaluated, and the environment to evaluate them under. Closures (clo) are the only type of
value in λscm, represented as a lambda term and the environment it was closed under. Environments (ρ) are
each a mapping from variables to addresses, which the Store (σ ) maps to values. We separate these domains in
preparation for abstraction, where having a distinguished set of addresses to finitize plays an important part.
Here, the the set of addresses (Addr) is some infinite set (such as N).
Figure 2 shows the atomic-expression evaluator we use as a helper function in the following semantics. It

either looks up a variable in the environment, and its address in the store, or it packages up the lambda expression
and environment into a closure.

Figure 4 shows five small-step rules defining evaluation. The [Let] rule handles let forms as equivalent to an
immediate application of a lambda (λ (x y...) eb ). The rule moves to evaluate the first right-hand-side (RHS), e0,
while pushing a new frame onto the current continuation (stack). Each frame contains three components: a list
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⟨eval (let ([x e0][y e1]...) eb ), ρ,σ ,κ⟩ →Σ ⟨eval e0, ρ,σ , ⟨frame (⟨clo (λ (x y...) eb ), ρ⟩), (e1...), ρ⟩ :: κ⟩ [Let]
⟨eval (e0 e1...), ρ,σ ,κ⟩ →Σ ⟨eval e0, ρ,σ , ⟨frame (), (e1...), ρ⟩ :: κ⟩ [App]

⟨eval ae, ρ,σ , ⟨frame (v0...), (), ρκ ⟩ :: κ⟩ →Σ ⟨apply (v0... vn),σ ,κ⟩, where [EvalApply]
vn = A(ae, ρ,σ )

⟨apply (⟨clo (λ (x0...xn) e), ρ⟩ v0...vn),σ ,κ⟩ →Σ ⟨eval e, ρ ′,σ ′,κ⟩, where [ApplyEval]
ρ ′ = ρ[xi 7→ ai ]

σ ′ = σ [ai 7→ vi ]

ai < dom(σ )

⟨eval ae, ρ,σ , ⟨frame (v0...), (e0 e1...), ρκ ⟩ :: κ⟩ →Σ ⟨eval e0, ρκ ,σ , ⟨frame (v0... vn), (e1...), ρκ ⟩ :: κ⟩, where [Ret]
vn = A(ae, ρ,σ )

Fig. 4. CESK machine operational semantics

of values, a list of unevaluated expressions, and an environment to evaluate them under. This particular frame
contains the let body in a closure (with formal parameters from the LHS of the let form) as the first element in its
value list, and any additional rhs expressions in the following list of expressions yet to be evaluated.

The [App] rules handles an application form by initiating evaluation of its first expression. The rest of the
expressions are added to a new continuation frame, along with the current environment, to be evaluated later.

The [EvalApply] rule completes the evaluation of application sub-expressions. This case is distinguished from
the later [Ret] rule by having a continuation with an empty list of unevaluated expressions atop the current stack.
The list of values in the continuation is moved into a new apply state, extended by the final value being returned,
and the top continuation frame is popped. The return (atomic) expression is evaluated with the atomic-expression
evaluator. This rule does not step into a lambda expression, which simplifies the logic by separating evaluation
from variable binding.
Binding formal variables to addresses in the environment, and addresses to values in the store, is the role of

the [ApplyEval] rule. This identifies the formal parameters from the lambda expression of the first element in
its list of values—the closure being invoked. The rest of the apply state’s values are bound to these variables by
extending the applied closure’s environment and the apply state’s current store by a set of fresh (never before
used) addresses. The rule steps the apply state to an eval state for the lambda body under the updated environment
and store.
The final rule is [Ret], for the case where an eval state is returning a value to an incomplete continuation (a

continuation with further expressions yet to be evaluated). The return expression is atomically evaluated and
appended to the top continuation frame’s value list, the next unevaluated expression becomes the new control
expression, and the current environment is reverted to the one stored in the continuation.
To fully evaluate a program e0 using these rules, we inject the program into an initial state ς0 = (e0,∅,∅, ϵ).

We perform the standard lifting of (→Σ) to a collecting semantics over sets of reachable states s ∈ S ≜ P(Σ). This
collecting relation (→S ) is a monotonic, total function that yields a set of the trivially reachable initial state ς0,
plus the set of all states immediately succeeding those in its input.

s →S s ′ ⇐⇒ s ′ = {ς ′ | ς ∈ s ∧ ς →Σ ς
′} ∪ {ς0}

If the program e0 terminates, then iteration of (→S ) from ⊥ (i.e., ∅) does as well. That is, (→S )
n(⊥) is a fixed

point containing e0’s full execution trace for some n ∈ N whenever e0 is a terminating program. No such n

Proc. ACM Program. Lang., Vol. 1, No. CONF, Article 1. Publication date: January 2018.
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ς̂ ∈ Σ̂ ≜

{
eval: Exp × Ênv × Înstr × �Store × �KStore ×�Kont
apply: D̂∗ × Înstr × �Store × �KStore ×�Kont

ρ̂ ∈ Ênv ≜ Var⇀�Addr k̂ ∈ K̂ ≜ P(�Kont)
σ̂ ∈ �Store ≜ �Addr → D̂ κ̂ ∈ �Kont ≜ �Frame

∗
× �Addr

d̂ ∈ D̂ ≜ P(Ĉlo) ψ̂ ∈ �Frame ≜ D̂∗ × Exp∗ × Ênv × Înstr

ĉlo ∈ Ĉlo ≜ Var∗ × Exp × Ênv ι̂ ∈ Înstr is a finite set

σ̂κ ∈ �KStore ≜ �Addr → K̂ â, âκ ∈ �Addr is a finite set
Fig. 5. Abstract abstract machine domains for λsch

is guaranteed to exist in the general case as our language is Turing complete, our semantics precise, and our
state-space Σ is infinite.

2.2 Abstracting Abstract Machines
With a precise (incomputable) semantics of λscm in hand, we may design a computable approximation using ab-
stract interpretation. Broadly, this process simultaneously finitizes the domains of our machine while introducing
nondeterminism into the transition relation (a state can step to more than one successor state) and the store
(an address can refer to more than one possible value). A finite domain of states (Σ) and state-spaces (S) means
that our fixed-point calculation would have to terminate after some finite number of steps, however we require
a defined notion of abstraction in order to show that a sound (valid) approximation of the original program is
maintained by the abstract semantics.

Figure 5 shows domains for our abstract abstract machine. Typographically we add hats to domains that have
changed so it is easy to see which have been abstracted. There were two sources of unboundedness in our concrete
CESK machine: there were an unbounded number of addresses and so an unbounded value store, and the stack
was modeled directly as an unbounded list. Both of these may be handled in the same way if we first store-allocate
continuations [Van Horn and Might 2010], and then finitize our address space. Addresses must be abstracted
to some finite set, a choice made by the allocator âlloc (discussed further in section 2.3), and so domains which
contain abstract addresses (such as the environment and store) are now abstract by virtue of containing abstract
addresses. We use a continuation store (from �KStore) to map continuation addresses, âκ , to sets of continuations,
which are now a list of frames followed by a continuation address. This address is allocated only during the
[AbsApplyEval] rule, which allows us to retain precision for frames that do not involve function calls (and
thus cannot possibly lead to unbounded extension of the stack). The other difference in the �Frame domain is
the inclusion of instrumentation (Înstr) as a general tunable parameter for extending states with contextual
information (explained more below), but this parameter must be some finite set.

Figure 8 shows two important helper functions. The first is abstract atomic evaluation. As before, variables are
accessed from the environment and store, however the store now maps addresses to sets of values, so atomic
evaluation may also result in a set of values. Closure creation results in a singleton set containing one abstract
closure. The second is a helper to retrieve the top frame of a given continuation—useful now that the continuation
may either directly contain a topmost frame or may be an address referencing the rest of the stack via the
continuation store.

Proc. ACM Program. Lang., Vol. 1, No. CONF, Article 1. Publication date: January 2018.
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⟨eval (let ([x0 e0][x1 e1]...) eb ), ρ̂, ι̂, σ̂ , σ̂κ , κ̂⟩ ;Σ [AbsLet]

⟨eval e0, ρ̂, ι̂
′, σ̂ , σ̂κ , ⟨frame ({⟨clo (x0 x1...), eb , ρ̂⟩}), (e1...), ρ̂, ι̂

′⟩ :: κ̂⟩, where

ι̂′ =�tick1(ι̂, ς̂)
⟨eval (e0 e1...), ρ̂, ι̂, σ̂ , σ̂κ , κ̂⟩ ;Σ ⟨eval e0, ρ̂, ι̂

′, σ̂ , σ̂κ , ⟨frame (), (e1...), ρ̂, ι̂
′⟩ :: κ̂⟩, where [AbsApp]

ι̂′ =�tick1(ι̂, ς̂)
⟨eval ae, ρ̂, ι̂0, σ̂ , σ̂κ , κ̂⟩ ;Σ ⟨apply (d̂0... d̂n ), ι̂2, σ̂ , σ̂κ , κ̂

′⟩, where [AbsEvalApply]

(⟨frame (d̂0...), (), ρκ , ι̂1⟩, κ̂
′) ∈ �lookupκ (κ̂, σ̂κ )
d̂n = A(ae, ρ̂, σ̂ )

ι̂2 =�tick2(ι̂0, ι̂1, ς̂)
⟨apply (d̂λ d̂0...d̂n ), ι̂, σ̂ , σ̂κ , κ̂⟩ ;Σ ⟨eval e, ρ̂ ′, ι̂, σ̂ ′, σ̂ ′

κ , âκ ⟩, where [AbsApplyEval]

⟨clo (x0...xn ), e, ρ̂⟩ ∈ d̂λ

ρ̂ ′ = ρ̂[xi 7→ âi ]

σ̂ ′ = σ̂ ⊔ [âi 7→ d̂i ]

σ̂ ′
κ = σ̂κ ⊔ [âκ 7→ �lookupκ (κ̂, σ̂κ )]
âi = âlloc(ς̂ ,xi )

âκ = (e, ρ̂ ′)

⟨eval ae, ρ̂, ι̂0, σ̂ , σ̂κ , κ̂⟩ ;Σ [AbsRet]

⟨eval e0, ρ̂κ , ι̂2, σ̂ ,σ̂κ , ⟨frame (d̂0... d̂n ), (e1...), ρ̂κ , ι̂1⟩ :: κ̂ ′⟩, where

(⟨frame (d̂0...), (e0 e1...), ρ̂κ , ι̂1⟩, κ̂
′) ∈ �lookupκ (κ̂, σ̂κ )
d̂n = A(ae, ρ̂, σ̂ )

ι̂2 =�tick2(ι̂0, ι̂1, ς)
Fig. 6. Abstract transition rules, ς̂ ;Σ ς̂

′, for λscm

âlloc((e, ρ̂, ι̂, σ̂ , σ̂κ , κ̂),x) ≜ (x , ι̂)�tick1(ι̂, ⟨eval e, ρ̂, (e1, . . . , ek ), σ̂ , σ̂κ , κ̂⟩) ≜{
(e, e1, . . . , ek−1) e = (ef . . .)

(e1, . . . , ek ) otherwise�tick2(ι̂0, ι̂1, ς̂) ≜ ι̂1

Fig. 7. Tunable Analysis Parameters

Â(x , ρ̂, σ̂ ) ≜ σ̂ (ρ̂(x))

Â((λ (x0...) e), ρ̂, σ̂ ) ≜ {⟨clo (x0...), e, ρ̂⟩}

�lookupκ (ψ̂ :: κ̂, σ̂κ ) ≜ {ψ̂ :: κ̂}�lookupκ (a, σ̂κ ) ≜ ⋃
κ ∈σ̂κ (a)

�lookupκ (κ, σ̂κ )
Fig. 8. Abstract atomic evaluation and continuation lookup

Figure 6 shows the transition rules for our abstract abstract machine. Each of the five rules corresponds to one
of the concrete transition rules and serves the same purpose. Along with the abstract domains, there are several
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other differences. Instrumentation has been added to each state and continuation frame. An instrumentation is
specific to a particular analysis, adding contextual information that can be used to increase analysis precision on a
per-context basis. Instrumentation may be updated at each evaluation step through the �tick1() and �tick2() helpers
(that take the entire state as input for flexibility/generality). Transition rules that use information from their
continuation must first look it up in a continuation store. The result is a set of continuations, so the transition
rule is followed for each one, producing a set of successor states. Likewise, where the closure being invoked at a
call site is uncertain, one successor state will result for each possible closure. Addresses are generated from state
data rather than being generated fresh. This provides a crucial opportunity to manage imprecision—more precise
and unique addresses will yield a more precise model of the store and thus of the program as a whole. Finally, as
stores no longer bind addresses to values, but to sets of values, new values to be bound are included along with
any other values previously bound to that address. That is to say, join (⊔) between stores distributes point-wise.

Figure 7 shows tunings for our analysis parameters that correspond to Shivers’ k-CFA family of analyses. This
tracks the top-most k call sites reached on the stack via the instrumentation, and differentiates bindings for
variables by both the variable name and this current calling context.

To analyze a program e0 using these rules, we inject the program into an initial state ς̂0 = (e0,∅, (),⊥,⊥, âhalt).
We perform the standard lifting of (;Σ) to a collecting semantics over sets of reachable states ŝ ∈ Ŝ ≜ P(Σ̂). This
collecting relation (;S ) is a monotonic, total function that yields a set of the trivially reachable initial state ς̂0,
plus the set of all states immediately succeeding those in its input.

s ;S ŝ ′ ⇐⇒ s ′ = {ς̂ ′ | ς̂ ∈ ŝ ∧ ς̂ ;Σ ς̂
′} ∪ {ς̂0}

Iteration of (;S ) from⊥ (i.e., ς) is guaranteed to terminate with a sound analysis of program e0. That is, (;S )
n(⊥)

is a fixed point containing a sound analysis of e0 for some n ∈ N.

Soundness. An analysis is called sound if the bound it provides on program behavior is accurate. The kind of
control-flow analysis we’ve developed is a conservative over-approximation of program behavior that places an
upper bound on the propagation of closures through the program and on edges in the control-flow graph. That
our analysis is sound thus entails that if a closure can flow to a concrete address a, our analysis must indicate
this same closure can flow to the abstract address for a, â. Likewise, our final control-flow graph (CFG) cannot
be missing any edges that are followed in any execution of the program—the CFG represents a correct upper
bound on control-flow. To prove our abstract semantics soundly models our concrete semantics, we would define
a family of abstraction functions α that map concrete entities to their most precise abstract corespondent, and
would use this formal notion of abstraction to show that simulation is preserved across every transition:

α(s) ⊆ ŝ ∧ s →S s ′ =⇒ ŝ ;S ŝ ′ ∧ α(s ′) ⊆ ŝ ′

2.3 Store Widening, IR, and Tunability
Global store widening. Various forms of widening and further approximations may be layered on top of

the above analysis (;). One such approximation is store widening, which is necessary for our analysis to be
polynomial-time in the size of the program. This structurally approximates the analysis above, where each
state contains a whole store, by pairing a set of reachable states without stores, with a single, global value store
and continuation store that over approximates all possible bindings. These global stores are maintained as the
least-upper-bound of all bindings that are encountered in the course of analysis.

ξ̂ ∈ Ξ̂ ≜ R̂ × �Store × �KStore r̂ ∈ R̂ ≜ P(Ĉ) ĉ ∈ Ĉ ≜ Exp × Ênv × Înstr ×�Kont
We may formalize a widened analysis result as a 3-tuple, ξ̂ , that contains a set of reachable (e, ρ̂, ι̂, κ̂) 4-tuples,

paired with a global value store σ̂ and continuation store σ̂κ . We may interpret such an analysis result as a set of
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states (e, ρ̂, ι̂, σ̂ ′, σ̂ ′
κ , κ̂) for all e , ρ̂, ι̂, σ̂ ′ ⊑ σ̂ , σ̂ ′

κ ⊑ σ̂κ , and κ̂: each configuration, sans store, is implicitly paired
with the two global stores (and all stores less than these).

Intermediate language. Setting up a semantics for other language features such as conditionals, primitive
operations, first class continuations, or exceptions, is no more difficult, if somewhat more verbose. For example,
supporting first-class continuations would require allowing κ̂ values in the store. Handling new forms is often as
straightforward as including an additional transition rule for each.

Allocation-based Polyvariance. Our previous sections formalized k-CFA, a call sensitive family of analyses that
track the previous k call sites visited at each point (using our parametric instrumentation component, Înstr) and
differentiate bindings by this call history for added precision in each of these possible contexts. More generally,
our instrumentation component, Înstr , �tick1 and �tick2 functions for advancing this instrumentation at each
step, and allocation function âlloc that generates addresses for each new binding, comprise a set of tunable
parameters we may use to vary the style of polyvariance or context sensitivity used by the analysis [Gilray et al.
2016a]. By varying these components, we can recapitulate a wide variety of analysis styles and render each using
our visualizer. We then use a very specific continuation address aκ = (e, ρ̂ ′) that is known to yield maximal
stack-precision for whatever instrumentation and allocation strategy are chosen [Gilray et al. 2016b].

3 VISUALIZING AAM’S
Our goal is to use a visualization to understand the results of an AAM-based static analysis. In this section we
will examine our goals and build up the intuition for our methodology. We first look at the interaction with a raw
analysis output (represented as a data structure in Racket). We then work towards visualizing the analysis results
as a directed graph (rather than textually), and highlight inherent tradeoffs as we build visualizations of the state
space (Section 3.2). We conclude this section by presenting a conceptual sketch for how an analysis user might
interact with our ideal visualization (Section 3.3).

3.1 Demo: Examining Variable Bindings
We must first understand how our visualization is to be used. An abstract interpretation (as in section 2.2) will
eventually result in some final analysis output, a fixed point. In our case, this is a set of abstract states paired
with a global value store and continuation store (a widened analysis result, ξ̂ ). We study the execution of our
abstract interpreter on the following small program:

1 ((λ (x) x) (λ (y) y))

In particular, we want to use our analyzer to approximate which terms get bound to x within the first lambda
expression. To do so, we invoke our evaluator by calling the function explore, which accepts two arguments: an
analysis sensitivity (parameter k for k-CFA), and a term (represented as an S-expression) to explore.

1 (match-define (cons states data) (explore (cfa 0) ; specifies 0-CFA
2 `((λ (x) x) (λ (y) y))))

The function explore performs fixed-point iteration to compute a set of final states and a collection of data about
the analysis (including the final store). As a first step, we bind these results to the states and data variables. At
this point, it is worth pointing out that the simplest possible visualization of all is perhaps simply just a textual
representation of the analysis results:

1 > states
2 (set (list 'eval 'x #hash() '() 'halt)
3 (list 'eval '(λ ...) '#hash() '() 'halt)
4 (list 'eval '((λ (x) ...) ...) ...) ...)
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States are represented as lists of a tag (’eval or ’apply) specifying the type of state, followed the state’s
components. A textual representation allows us to recover the answer to anything the analysis can tell us,
however, extracting useful information this way is particularly laborious. For example, we might want to know
which closures eventually reach x within the above program (the closure for (λ (y) y) in this case). To recover this
from the textual analysis results, we could fold over the set of states produced by the analysis and examine the
states in which the control expression is x. From there we could we could examine the environment to determine
the address for x, which we would then use as an index into the global store.

3.2 Challenges and Tradeoffs in Visualizing AAMs
Using a textual interface to examine properties of an abstract interpretation is useful in some scenarios; for
example, debugging an analysis. However, a textual representation is often cumbersome to interact with and is
less enabling of open-ended exploration of the analysis results. This is because the textual representation flattens
and obfuscates the inherently graph-based and relational structure in the state graph and store.

Fig. 9. Visualization mockup

A First Attempt. As a first attempt we generate a graph like the one
on the right, which is simply the control-flow graph produced by the
analysis. The visualization is rooted at the initial state (colored green,
under ς), an eval state for the top-level expression. But there is still
a problem: how do we usefully render the data at each state? The
challenge lies in the fact that much of the information stored However—
as each state in the graph it is not enough to look at the state graph in
isolation.

Challenge: Visualizing the Store. There are several options available
to us. For example, we could visualize the store alongside the graph:

Fig. 10. Visualization mockup with environment

However, this requires the user to manually in-
spect the store and perform lookup on-demand.
While this is an obvious inefficiency, visualizing the
store is challenging due to its tightly interwoven
nature. Another solution is to have the visualization
look up values from the store in certain scenarios.
For example, when visualizing the result of an anal-
ysis we likely prefer a visualization that displays
environments in the form{
x 7→

{〈
(λ(x) x), . . .

〉
,
〈
(λ(y) z), . . .

〉}
, z 7→ . . .

}
rather than

{
x 7→ α1, z 7→ α2

}
, leaving the user to

lookup each address manually.

Tradeoff: When Should we Inline? A trade-off has been made in the first attempt: the closures contained within
the set of results for x also contain environments. We must ask whether to further inline environments, and if so
to what depth. In general inlining environments will not terminate (as the store may contain closures with loops
or mutual dependences). Another strategy might allow the user to interactively inline environments (e.g., via
clicking) or automatically unroll top-level environments and allow the user to interactively inline subsequently
encountered nested environments.

Challenge: Controlling State Explosion. For relatively small programs—such as the one in our above example—the
state graph is also small. The approach we described above rapidly breaks down for programs beyond a few
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(a)

(b)

Fig. 11. Visualization mockup (functional components, 11a), and Panes for intra- and inter-procedural state views (11b).

lines. The main problem is that the state graph shows a global view of the program’s execution: states from every
function in the program are shown together into a single graph. This can be useful in some scenarios, however,
execution graphs will, in general, become overwhelmingly large. This problem is compounded when the analysis
is made more precise (e.g., by selecting 2-CFA rather than 0-CFA). One key trade-off for our visualization is
deciding to what degree parts of the graph are elided to focus on a specific component.

One strategy is to visualize the execution of each function in isolation. This allows us to leverage the procedural
abstraction inherent in the analyzed program’s structure. For example:

1 (define (f x) ((λ (y) y) ((λ (x) x) x)))
2 (define (g x) (... (sqrt (max x) ...)))
3 (define (h x) (...))
4 (f (g (h z)))

If we visualize the above program and focus only on the execution of g, we can collapse states from other
functions into to a single point (see figure 11a). Isolating our visualization of the analysis to a specific function at
a time allows the user to focus on how each functional component interacts with the program at large.

3.3 Our Strategy for Visualizing AAMs
Our visualization consists of two high-level views presented in separate physical panes. The first view is a
per-function control-flow graph that shows the intraprocedural analysis of a selected function. The second view
is an interprocedural call graph. A mockup of said approach appears in Figure 11b.

In this visualization, h’s intraprocedural execution graph is shown on the right. Because h calls both f and g, its
intraprocedural execution is fairly straightforward (we elide the states which simply evalulate the variables f and
g): first apply g, then apply f on the result, then return.
Our visualization includes a key interactive feature that allows switching between functions: clicking on a

dotted call edge will highlight the corresponding target function in the interprocedural call graph. Clicking
a different function in the interprocedural call graph will swap the current function being displayed in the
interprocedural graph. For example, clicking on the edge for g will highlight g’s vertex in the call graph, and
clicking on g in the call graph will swap to displaying the execution of g (which simply returns x).

4 IMPLEMENTATION
The visualizer is a client web application that interfaces with a server to handle API requests and analysis
processing. Users interact with the client application to submit code to the server for processing and to visualize
the resulting analysis. To edit code, users can fork a project, make changes, and resubmit modified code.
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(a)

(b)

Fig. 13. Edit and submit a new project (13a), Project view (13b).

4.1 Application workflow

Fig. 12. Project list view

The web client is a reactive JavaScript application using
React.js. The open-source Cytoscape.js and CodeMirror li-
braries are used for graph visualization and code syntax
highlighting, respectively. Our NodeJS-powered server uti-
lizes Express.js for routing and stores each project in mem-
ory as well as on the disk in a local /data/ folder. We use
a custom Racket codebase to run the analysis, which is then
cached to be delivered to the client on request.
The client application has three main views: project list,

project editing, and project visualization. The project list view shows an overview of all projects on the server.
When a project is created, it may be edited in an editing view before being submitted for processing. Once a
project is submitted it becomes immutable and the client application switches to a visualization mode, then
downloads and displays the project’s analysis using a split-pane view.

When the web app loads, it begins at the project list view, shown in figure 12. Here we see each project as well
as options to delete or fork it. To create an empty project, we click on the top right button. The new project will
then be added to the list. We can select the project to enter it’s editing page.

Because the project has not been submitted yet for processing, we are able to edit the project and provide code
for analysis. We can return to the project list view at any time by clicking the top left button. Existing code will
be saved to the server. The main text box is for input of code and analysis options are available on the bottom
toolbar, as seen in figure 13a. To initiate analysis of the code, we can click on the bottom right button. The project
list will update when the project has finished analysis.
Figure 13b shows the project view of an identity function applied on an identity function. All panes within

this view are resizeable. The top-left pane shows an interprocedural call graph; the bottom-left pane shows a
function graph for the component selected in the top-left pane. Clicking on dashed edges in the function graph
will highlight called nodes in the call graph. We can switch to the whole-program CFG by clicking the selection
button at the top of the graphs.
The code pane at the top right, while immutable to changes, is still interactive. Clicking on the numbered

superscript marks will select the corresponding graph node. Likewise, selecting nodes in the graphs will highlight
relevant code. The bottom right pane visualizes the selected node’s subsumed states and environment.
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output ≜ fid ×MGraph × Graphs FGraph ≜ FState → P(FTrans)

MGraph ≜ fid → P(MTrans) FTrans ≜ FState × Tran

MTrans ≜ Final | fid × Tran Final ≜ finalinfo × P(fid)

Graphs ≜ fid → P(FState × FGraph) Tran ≜ transitioninfo × P(fid)

FState ≜ ς | P(ς) | Final fid is a label for a function

Fig. 14. Segmentation output

4.2 Segmentation Algorithm
After our AAM-based analysis runs on the server, we post-processing an analysis in phase we call segmentation.
Segmentation uses the main analysis as its input data and, along with information about the analysis implemen-
tation, produces multiple graphs. One graph is produced for each lambda expression that is the call-target of an
application expression. Another graph is produced with nodes representing these lambda expressions and edges
representing their calls to, and returns from, one another.
Segmentation proceeds in four main stages: identifying calls, identifying returns, building intraprocedural

graphs, and compiling info from these into a summary graph. The identification stages each make a pass over
the analysis states, caching relevant information. Calls are entry points to functions, the state following the
completion of an application. They are identified by the function they enter. Returns are states following atomic
expression states, the continuation of which serves as their identification.
To build our intraprocedural graphs we process entries from our cached calls. Each provides a set of states

that entered a function. We consider this a single super-state in our graph. In the general case, we step each
element of this set to the next state in the main analysis, collecting the results into a set that serves as the next
super-state. Special cases are applications and atomic expressions, which will mark the entries and exits to other
functions. This data is collected to be used in the summary graph. Atomic expressions are always function exits,
and we step their main analysis states to determine the function they exit to (or identify a halt state instead).
Applications evolve by stepping into another function and then (potentially) returning from it. We step the main
analysis states to determine which function they enter and to retrieve the continuation from that entry. We look
up the continuation in our global returns cache to get our next super-state. If there are no returns we produce a
special state to signify this fact. Each intraprocedural graph is produced in turn and their entry points are used as
nodes in our interprocedural CFG of components. We make edges from their calls and returns. We also produce
special nodes for each exit point, either halt states or error states.

The output of this algorithm is formalized in figure 14. It is a tuple of top-level function id, the main (interpro-
cedural) graph, and the function graphs. Function ids (fid) are used throughout to select a particular function
(interprocedural) graph. The main graph (MGraph) is a mapping from function ids to a set of transitions (MTrans).
These include the id of the next state as well as some transition info (Tran). In the main graph we currently only
use the transitioninfo, an identifier for the transition (e.g. whether it’s a call or return). The rest of the Tran
info is more useful in the function graphs. Main graph transitions can also be to a Final state, which serves as its
own transition information as well. Final states may be a halt or stuck state, for example. Along with the main
graph in the output we have a number of function Graphs, any one of which can be selected with a function id.
This id maps to a pair of the initial state of the graph and the graph itself. As with the main graph, the function
graphs (FGraph) are mappings from states to a set of states with transition information. Here we can make use of
the set of function ids included with Tran. Transitions from one state to the next in a function graph could be a
call and/or return from other functions or exit to another function, so we include their ids here.

Proc. ACM Program. Lang., Vol. 1, No. CONF, Article 1. Publication date: January 2018.



565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

Visualizing AAMs • 1:13

Fig. 15. View of analysis with high-
lighted functions

A state in a function graph, shown in figure 14 as FState, can be a single
state from our main AAM analysis, a set of those states, or a final state. Final
states here are similar to the main graph final states described above, and
are shown in the function graphs (to show where in the evolution of states
they occur). In some cases we use single states ς as final states in function
graphs, to provide more information about this result. In most cases, however,
we subsume a sets of states ς with one node in the function graph. This is
possible because the syntax of a function leads its development regardless
of, e.g., the information in its store or the instrumentation used. This specific
information is still available in the individual states, but they flow together
until reaching a branch point (such as a function call). Our current λscm does
not have intra-procedural branching, but including it is future work, and
would require segmenting the set of states.

4.2.1 Function graph transitions. Generating transitions between functions
involves several cases. These states comprise a set of states ς , a super-state, of
our primary AAM analysis. All eval states should have the same expression,
though imprecision in the analysis may interfere with this at branch points.
In cases that are not call or return states, we generate the state transitions,
unioning the results to produce the new super-state.
Return states are those that evaluate atomic expressions, or are labeled

as returning through a tail-call. For these we generate the next states and
compute the id of the function they are part of (this data is cached during
parsing and the main analysis). We generate an exit transition for each func-
tion id. Some of these function ids may indicate that the exit also concludes
the top-level function, so we generate a halt transition. We may also generate
a stuck state transition here if the id cannot be computed.

Call states are those that would transition with the [AbsApplyEval] rule.
We generate all the next states and then separate them into those that continue and those that do not. Stuck
states do not continue, but for the rest we must check with our global cache of return states described above.
The goal here is to transition directly to the return of the function called in the state, bypassing all intermediate
super-states. We use the continuation address of the state we called into as the key in the return cache, providing
a set of states returning here. If it is an empty set, then there was no return to this function (generally the result
of a non-terminating loop) and we create a no-return transition. Otherwise, we union all the return states as the
new super-state, and all the function ids we called into as transition data. This data can be read by our visualizer
to highlight called functions.

4.3 Analysis walkthrough
Lets take a look at an example expression and explore its analysis with our visualization. We’ll use the code below
because it’s a simple illustration of imprecision in an analysis affecting results.

1 (let ([x (lambda (x) (x x))]
2 [y (lambda (y) y)]
3 [z (lambda (z) z)])
4 ((x y) z))

Figure 15 shows the view of the left panes after analyzing with 0-CFA (highlighting is explained below). The
top-left pane has the central node selected (representing the top-level expression). The bottom pane shows a
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(a)

(b)

Fig. 16. Full view of visualizing “y” (16a) and States in 2-cfa (16b).

progression of sequential states, starting at the top and ending with multiple exits. The first few states are labeled
as “eval” followed by a “let”. These correspond to evaluating each of the lambdas in the let-form into closures,
followed by binding them to the given (LHS) variables. This particular syntax also provides names to these
closures which the visualization uses to represent them (e.g., x denotes (λ (x) . . .)). Next, the body of the
let-form is evaluated in multiple steps before applying x to y. Here we see a dotted arrow leaving an “apply” state,
connecting it to a “return” state. Selecting this edge (or any dotted arrow) will highlight the invoked function (or
functions) in the upper pane. After a few more “eval” states, we find another “apply”-“return” pair, corresponding
to the second application in the code. Figure 15 shows the visualizer when we click on the dotted arrow between
them, highlighting the two functions on the upper pane. We could have also clicked on the small number “1” in
the text pane in the upper right—clicking these markers selects states in either graph.

Here we may note, via manual evaluation of the code, that the identity function labeled “z” is never called, but
the analysis highlights it as if it were. This is an artifact of imprecision in 0-CFA. Since the function called here is
the result of “y”, an identity function, any result of “y”, and therefore parameter of “y”, could be called. “z” is
a parameter of “y” at some point, so it appears it could be called here. We can see this information by clicking
on “y” in the visualization, shown in figure 16a. In this expanded view, we see the sub-states composing the
entry point to “y”, along with the environment of one of them. It shows this function sitting atop multiple stacks
(corresponding to both calls in the concrete evaluation), which gives two possible values for y in the environment.
These multiple elements are on different lines in the last column of one row in their table. This lack of precision
can be fixed by forking the project and running a more polyvariant analysis, such as 2-CFA. Looking at the states
of “y” at this point will show what is in figure 16b, two different states, each of which has only one continuation.

5 CONCLUSION
This paper focuses on exploring AAM-style program analyses. While very useful, they can be difficult to
understand in their raw form. Analysis designers and others who can’t rely on the simplest outputs need methods
of studying whole analyses. We present one such method, building on tunable AAM for maximum flexibility. We
build a visualization focused on individual functions. This presents the user with multiple forms of information
in small chunks, from standard code view to summary graphs and state-specific environments. We believe this to
be useful now, and look forward to extending its capability in the future.
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